

Klimatisierung Technische Daten

RXM-M9

INHALT

RXM-M9

1	Merkmale 2
2	Technische Daten3Leistung und Leistungsaufnahme3Technische Daten26Elektrische Daten27
3	Elektrische Daten 28 Daten Elektrik 28
4	Leistungstabellen 30 Kühl-/Heizleistungstabellen 30
5	Abmessungszeichnungen 43
6	Masseschwerpunkt 44 Massenschwerpunkt 44
7	Kältemittelkreislauf 46 Kältemittelkreisläufe 46
8	Elektroschaltplan 48 Elektroschaltpläne – Eine Phase 48
9	Schalldaten. 51 Schalldruckspektren 51
10	Betriebsbereich 54

- п
- Saisonale Effizienzwerte bis A+++
- Mit einer Entscheidung für eine Anlage mit R-32 verringern sich die Auswirkungen auf die Umwelt auf 68 % im Vergleich zu Anlagen mit R-410A. Dank der hohen Energieeffizienz sinkt der Energieverbrauch unmittelbar.
- Daikin Außengeräte haben ein gefälliges Design und sind robust und können auf dem Dach oder auf der Terrasse oder einfach an eine Wand montiert werden.
- Außengeräte sind mit einem Swingverdichter ausgestattet, der sich durch einen niedrigen Geräuschpegel und äußerst geringen Energieverbrauch auszeichnet
- Außengeräte für Split-Anwendung
- Mit Korrosionsschutz behandelte Wärmetauscherrippe im Außengerät

Flüsterbetrieb des Außengeräts

2-1 Leistung u	nd Leistungsaufna	ahme			FNA25A/RXM25M9	FNA35A/RXM35M9	FNA50A/RXM50M9	FNA60A/RXM60M9
Innengerät					FNA25A2VEB	FNA35A2VEB	FNA50A2VEB	FNA60A2VEB
Außengerät					RXM25M3V1B9	RXM35M3V1B9	RXM50M3V1B9	RXM60M3V1B9
Kühlleistung	Nom.			kW	2,60	3,40	5,00	6,00
				BTU/h	8.872	11.601	17.061	20.473
				kcal/h	2.236	2.923	4.299	5.159
Heizleistung	Nom.			kW	3,20	4,00	5,80	7,00
-				BTU/h	10.919	13.649	19.790	23.885
				kcal/h	2.752	3.439	4.987	6.019
Leistungsaufnahme	Kühlung	Nom.		kW	0,68	1,10	1,48	2,22
Ü	Heizen	Nom.		kW	0,80	1,15	1,74	2,25
Pto (Thermostat off)	rmostat off)			W	7	,0	9	,0
Kühlung	Cdc (Absinken Kühlu	ing)				0,	25	
Heizen	Cdh (Absinken Heize	-				0,	25	
Kühlfunktion inklusiv	,	,			J	a		es
Heizfunktion inklusiv						la		es
Durchschnittliches Kli	ima inklusiv				+	la	Υ	es
Kalte Saison inklusiv					Ne	ein	N	lo
Warme Saison inklus	iv				J	la	Υ	es
Eco-Labellogo					ļ	ein	N	
Eurovent	Sound power level outdoor	Cooling	Nom.	dBA	59 61		62	63
	Schallleistungspege I innen	Kühlung	Nom.	dBA	5	3	5	6
	Leitungslänge	Kühlung	Messbedingung	М		5	,0	
Nominale Effizienz	EER			1	3,80 3,09		3,38	2,70
	СОР				4,00	3,48	3,34	3,11
	Jährlicher Energiever	rbrauch		kWh	342 (0,000)	551 (0,000)	739 (0,000)	1.111 (0,000)
	Richtlinie zur	Kühlen			A	В	A	D
	Energiekennzeichn ung	Heizen			А	В	С	D
Raumkühlen	Leistung	Pdesign		kW	2,60	3,40		-
I	Energieeffizienzklass	se		•	A	\+		-
	SEER				5,68	5,70		-
	Jährlicher Energiever	rbrauch		kWh/a	160	209		-
	Bedingung A	Pdc		kW	2,60	3,40		-
	(35 °C – 27/19)	EERd			3,80	3,09		-
		Leistungsaufna	hme	kW	0,68	1,10		-
	Bedingung B	Pdc		kW	1,92	2,50		-
	(30 °C – 27/19)	EERd		1	5,17	4,41		-
		Leistungsaufna	hme	kW	0,37	0,57		-
	Bedingung C	Pdc		kW	1,27	1,61		-
	(25 °C – 27/19)	EERd		1	8,97	9,38		-
		Leistungsaufna	hme	kW	0,14	0,17		-
	Bedingung D	Pdc	•	kW	1,33	1,46		-
	(20 °C – 27/19)	EERd		1	10,18	10,14		-
	1	Leistungsaufna		kW	0,13	0,14	ļ	

2-1 Leistung un	d Leistungsaufna	ahme			FNA25A/RXM25M9	FNA35A/RXM35M9	FNA50A/RXM50M9	FNA60A/RXM60M9
Raumheizen	Leistung	Pdesign		kW	2,80	2,90		-
(Durchschnittliches	Energieeffizienzklass			ı	А	ı+		-
Klima)	SCOP/A				4,24	4,05		-
	SCOPnet/A				4,28	4,08		-
	Pdh Heating capacity	ı at -10°		kW	2,16	2,42		-
	Jährlicher Energiever			kWh/a	924	1.002		-
	Erforderliche Reserve			kW	0,64	0,48		-
	Auslegungsbedingun			NVV	0,04	0,40		
	TOL	Tol (Temperaturbetriebsgrenze) °C			_1	<u> </u> 5		=
	TOL	Pdh (deklarierte He		kW	1,93	2,15		
		COPd (deklarierter		KVV	2,20	2,13		<u> </u>
				kW	0,88			
	TD:1t	Leistungsaufnahme				0,97		=
	TBivalent	Tbiv (Bivalenz-Tem		°C		7		-
		Pdh (deklarierte He		kW	2,48	2,57		-
		COPd (deklarierter COP)			2,80	2,71		-
		Leistungsaufnahme		kW	0,89	0,95		-
	Bedingung A (-7 °C)	Pdh (deklarierte He		kW	2,48	2,57		-
		COPd (deklarierter			2,80	2,71		-
		Leistungsaufnahme		kW	0,89	0,95		-
	Bedingung B (2 °C)	Pdh (deklarierte He	izleistung)	kW	1,51	1,57		-
		COPd (deklarierter	COP)		4,18	4,01		-
		Leistungsaufnahme		kW	0,36	0,39		-
	Bedingung C (7 °C)	Pdh (deklarierte He	izleistung)	kW	1,00	1,02		-
		COPd (deklarierter			5,51	5,16		-
		Leistungsaufnahme	•	kW	0,18	0,20		-
	Bedingung D	Pdh (deklarierte He		kW	1,17	1,19		
	(12 °C)	COPd (deklarierter			6,80	6,35		-
		Leistungsaufnahme		kW	0,17	0,19		-
Raumheizen (Warmes	Leistung	Pdesign		kW	1,51	1,57		-
Klima)	Energieeffizienzklass			I KVV		++		
,	SCOP				5,43	5,10		
	SCOPnet				5,50	5,16		-
	Jährlicher Energiever	rhrauch		kWh/a	389	431		-
	Erforderliche Reserve			kW				-
	Auslegungsbedingun			KVV	0,	00		-
	TOL	Tol (Temperaturbeti	riebsgrenze)	°C	-1	15		-
	.02	Pdh (deklarierte He		kW	1,93	2,15		
		COPd (deklarierter		KVV	2,20	2,21		
		Leistungsaufnahme		kW	0,88	0,97		_
	TBivalent	Tbiv (Bivalenz-Tem		°C		2		-
	I DIVAICH							-
		Pdh (deklarierte He		kW	1,51	1,57		-
		COPd (deklarierter		1	4,18	4,01		-
		Leistungsaufnahme		kW	0,36	0,39		-
	Bedingung B (2 °C)	Pdh (deklarierte He		kW	1,51	1,57		-
		COPd (deklarierter			4,18	4,01		-
		Leistungsaufnahme		kW	0,36	0,39		-
	Bedingung C (7 °C)	Pdh (deklarierte He		kW	1,00	1,02		-
		COPd (deklarierter			5,51	5,16		
		Leistungsaufnahme		kW	0,18	0,20		-
	Bedingung D	Pdh (deklarierte He	izleistung)	kW	1,17	1,19		-
	(12 °C)	COPd (deklarierter		•	6,80	6,35		-
		Leistungsaufnahme		kW	0,17	0,19		-
Energieverbrauch in	Modus "AUS"			W				-
		POFF		W	14,0 14,0			
Betriebsarten "Nicht	Modus "Standby"	Betriebsarten "Nicht ktiv" Modus "Standby" Kühlen PSB Heizen PSB				1.0		-

Hinweise

Siehe separate Zeichnung für die elektrischen Daten

Siehe separate Zeichnung für den Betriebsbereich

Nennkühlleistungen basieren auf: Innentemperatur: 27 °C TK, 19 °C FK; Außentemperatur: 35 °C TK; äquivalente Länge Kältemittelleitung: 5 m; Niveauunterschied: 0 m. Nennheizleistungen basieren auf: Innentemperatur: 20 °C TK; Außentemperatur: 7 °C TK, 6 °C FK; äquivalente Kältemittel-Leitungslänge: 5 m; Niveauunterschied: 0 m.

2-1 Leistung ur	nd Leistungsa	ufnahme			FBA35A/RXM35M9	FBA50A/RXM50M9	FBA60A/RXM60M9
Innengerät					FBA35A2VEB	FBA50A2VEB	FBA60A2VEB
Außengerät					RXM35M3V1B9	RXM50M3V1B9	RXM60M3V1B9
Kühlleistung	Nom.			kW	3,40	5,00	5,70
				BTU/h	11.601	17.061	19.449
				kcal/h	2.923	4.299	4.901
Heizleistung	Nom.	n.			4,00	5,50	7,00
					13.649	18.767	23.885
				kcal/h	3.439	4.729	6.019
Leistungsaufnahme	Kühlung	Nom.		kW	0,85	1,41	1,64
	Heizen	Nom.		kW	1,00	1,44	1,89
Saisonale Effizienz	Kühlung	Energieeffizienzk	lasse		A	++	A+
(gemäß EN14825)		Pdesign		kW	3,40	5,00	5,70
		SEER			6,23	6,27	5,91
		Jährlicher Energie	everbrauch	kWh	191	279	337
		Bedingung A	Pdc	kW	3,40	5,00	5,70
		(35 °C – 27/19)	EERd		4,02	3,55	3,48
			Leistungsaufnahme	kW	0,85	1,41	1,64
		Bedingung B	Pdc	kW	2,51	3,64	4,20
		(30°C – 27/19)	EERd		5,54	5,22	5,02
			Leistungsaufnahme	kW	0,45	0,70	0,84
		Bedingung C	Pdc	kW	1,73	2,36	2,70
		(25°C – 27/19)	EERd		8,13	8,39	7,94
			Leistungsaufnahme	kW	0,21	0,28	0,34
		Bedingung D	Pdc	kW	1,61	1,98	2,13
		(20°C – 27/19)	EERd		9,06	10,50	8,52
			Leistungsaufnahme	kW	0,18	0,19	0,25

2-1 L	eistung un	d Leistungsaufna	ahme			FBA35A/RXM35M9	FBA50A/RXM50M9	FBA60A/RXM60M9
	le Effizienz	Heizen	Energieeffizienzkl	lasse			A+	
(gemäß	EN14825)	(durchschnittliches	Pdesign		kW	2,90	4,40	4,60
		Klima)	SCOP			4,07	4,06	4,01
			SCOPnet			4,10	4,08	4,02
			Pdh Heizleistung	bei -10 °C	kW	2,47	3,76	3,91
			Jährlicher Energie	everbrauch	kWh	996	1.517	1.607
			Erforderl. Reserve Entwurfsbed.	3	kW	0,43	0,64	0,69
			TOL	Tol (Temperaturbetriebs bereich)	°C		-15	
				Pdh (deklarierte Heizleistung)	kW	2,15	3,47	3,85
				COPd (deklarierter C	OP-Wert)	2,37	1,95	2,11
	TBivale			Leistungsaufnahme	kW	0,91	1,78	1,83
		TBivalent	Tbiv (bivalente Temperatur)	°C		-7		
			Pdh (deklarierte Heizleistung)	kW	2,57	3,89	4,09	
				COPd (deklarierter C	OP-Wert)	2,73	3,09	3,01
				Leistungsaufnahme	kW	0,94	1,26	1,36
			Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,57	3,89	4,09
				COPd (deklarierter C	OP-Wert)	2,73	3,09	3,01
				Leistungsaufnahme	kW	0,94	1,26	1,36
			Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,57	2,37	2,44
				COPd (deklarierter C	OP-Wert)	4,03	4,20	4,18
				Leistungsaufnahme	kW	0,39	0,56	0,58
			Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	1,02	1,61	1,60
				COPd (deklarierter C	OP-Wert)	5,18	4,55	4,41
				Leistungsaufnahme	kW	0,20	0,35	0,36
			Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW	1,19	1,58	1,79
				COPd (deklarierter C	OP-Wert)	6,38	5,23	5,32
				Leistungsaufnahme	kW	0,19	0,30	0,34

2-1 Leistung un	d Leistungsaufn	ahme			FBA35A/RXM35M9	FBA50A/RXM50M9	FBA60A/RXM60M9
Saisonale Effizienz	Heizen (warmes	Energieeffizienzk	classe		A+++	F	/ +
(gemäß EN14825)	Klima)	Pdesignh		kW	1,57	2,37	2,44
		SCOP		•	5,12	4,47	4,43
		SCOPnet			5,19	4,48	4,44
		Jährlicher Energi	everbrauch	kWh	429	741	770
			serve-Heizleistung	kW		0,00	
		bei Entwurfsbedi	n.				
		TOL	Tol (Temperaturbetriebs bereich)	°C		-15	
			Pdh (deklarierte Heizleistung)	kW	2,15	3,47	3,85
			COPd (deklarierter C	OP-Wert)	2,37	1,95	2,11
			Leistungsaufnahme	kW	0,91	1,78	1,83
		TBivalent	Tbiv (bivalente Temperatur)	°C		2	
			Pdh (deklarierte Heizleistung)	kW	1,57	2,37	2,44
			COPd (deklarierter C	OP-Wert)	4,03	4,20	4,18
			Leistungsaufnahme	kW	0,39	0,56	0,58
		Bedingung B (2 °C)	Pdh (deklarierte Heizleistung)	kW	1,57	2,37	2,44
		, ,	COPd (deklarierter C	OP-Wert)	4,03	4,20	4,18
			Leistungsaufnahme	kW	0,39	0,56	0,58
		Bedingung C (7 °C)	Pdh (deklarierte Heizleistung)	kW	1,02	1,61	1,60
		(/	COPd (deklarierter C	OP-Wert)	5,18	4,55	4,41
			Leistungsaufnahme	kW	0,20	0,35	0,36
		Bedingung D (12 °C)	Pdh (deklarierte Heizleistung)	kW	1,19	1,58	1,79
		(12 0)	COPd (deklarierter C		6,38	5,23	5,32
D. /T			Leistungsaufnahme	kW	0,19	0,30	0,34
Pto (Thermostat off)	To 1 (0) 11 11 1	16011		W	7,0		2,0
Kühlung	Psb (Standby-Modu	0.		W	7,0		2,5
	Cdc (Absinken Kühl	-				0,25	
Heizen	Psb (Standby-Modu Cdh (Absinken Heiz			W	7,0	0,25	2,5
Poff (AUS-Modus)	•			W	7,0		-
Kühlfunktion inklusiv				•		Ja	
Heizfunktion inklusiv						Ja	
Durchschnittliches Klin	na inklusiv					Ja	
Kalte Saison inklusiv						Nein	
Warme Saison inklusiv	1					Ja	
Eco-Labellogo						Nein	
Eurovent	Sound power level outdoor	Cooling	Nom.	dBA	61	62	63
	Schallleistungs- pegel innen	Kühlung	Nom.	dBA	6	0	56
	Leitungslänge	Kühlung	Messbedingung	М		5,0	1
Nominale Effizienz	EER	1 3	1 . 39	1	4,02	3,55	3,48
	COP				4,02	3,83	3,71
	Jährlicher Energieve	erbrauch		kWh	423 (0,000)	704 (0,000)	818 (0,000)
	Richtlinie zur	Kühlen		*****	120 (0,000)	A	0.10 (0,000)
	Energiekennzeichnung	Heizen				A	
		1 ICIZCII				Α	

Hinweise

Siehe separate Zeichnung für die elektrischen Daten

Siehe separate Zeichnung für den Betriebsbereich

 $Nennk\"{u}hlle istungen \ basieren \ auf: Innentemp.: 27\ ^{\circ}C\ TK, \ 19\ ^{\circ}C\ FK; \ Außentemperatur: 35\ ^{\circ}C\ TK; \ \ddot{a}quivalente\ L\"{a}nge\ K\"{a}ltemittelle itung: 5\ m; \ Nive auunterschied: 0\ m.$

Nennheizleistungen basieren auf: Innentemperatur: 20°C TK; Außentemperatur: 7°C TK, 6°C FK; äquivalente Kältemittel-Leitungslänge: 5 m; Niveauunterschied: 0 m.

2-1 Leistung ur	nd Leistungsa	aufnahme		FTXM20M/ RXM20M9	FTXM25M/ RXM25M9	FTXM35M/ RXM35M9	FTXM42M/ RXM42M9	FTXM50M/ RXM50M9	FTXM60M/ RXM60M9	
Innengerät	-			FTXM20M2V1B	FTXM25M2V1B	FTXM35M2V1B	FTXM42M2V1B	FTXM50M2V1B	FTXM60M2V1B	
Außengerät					RXM20M3V1B9	RXM25M3V1B9	RXM35M3V1B9	RXM42M3V1B9	RXM50M3V1B9	RXM60M3V1B9
Kühlleistung	Min.			kW	1	,3	1,4	1,	70	1,90
				BTU/h	4.4	00,0	4.800,0	5.800		6.500
				kcal/h	1.13	20,0	1.200,0	1.4	160	1.700
	Nom.			kW	2,0	2,5	3,4	4,20	5,00	6,00
				BTU/h	6.800,0	8.500,0	11.600,0	14.300	17.100	20.500
				kcal/h	1.720,0	2.150,0	2.920,0	3.610	4.300	5.160
	Max.			kW	2,6	3,2	4,0	5,00	5,30	6,70
				BTU/h	8.900,0	11.000,0	13.600,0	17.100	18.100	22.900
		Min.				2.750,0	3.440,0	4.300	4.560	5.800
Heizleistung	Min.					30	1,40		1,70	I.
				BTU/h	4.4	00,0	4.800,0		5.800	
				kcal/h	1.13	20,0	1.200,0	1.4	160	1.500
	Nom.			kW	2,50	2,80	4,00	5,40	5,80	7,00
				BTU/h	8.500,0	9.500,0	13.600,0	18.400	19.800	23.900
				kcal/h	2.150,0	2.400,0	3.440,0	4.640	4.990	6.020
	Max.	kW	3,50	4,70	5,20	6,00	6,50	8,00		
			BTU/h	11.900,0	16.000,0	17.700,0	20.500	22.200	27.300	
			kcal/h	3.010,0	4.040,0	4.470,0	5.160	5.590	6.900	
Leistungsaufnahme	Kühlung	Kühlung Min.			0,	27	0,31		-	I.
-	- turnarig	Nom.	Nom.		0,44	0,56	0,80	1,12	1,36	1,77
		Max.	Max.		0,63	0,78	1,04		-	I.
	Heizen	Min.	Min.		0,	24	0,32		-	
		Nom.	Nom. Max.		0,50	0,56	0,99	1,31	1,45	1,94
		Max.			0,91	1,22	1,67		-	
Saisonale Effizienz	Kühlung	Energieeffizienzk	lasse			A+++			A++	
(gemäß EN14825)		Pdesign		kW	2,00	2,50	3,40	4,20	5,00	6,00
		SEER			8,53	8,52	8,51	7,50	7,33	6,90
		Jährlicher Energi	everbrauch	kWh	83	103	140	196	239	304
		Bedingung A	Pdc	kW	2,00	2,50	3,40	4,20	5,00	6,00
		(35 °C – 27/19)	EERd		4,57	4,50	4,23	3,75	3,68	3,39
			Leistungsaufnahme	kW	0,44	0,56	0,80	1,12	1,36	1,77
		Bedingung B	Pdc	kW	1,47	1,84	2,51	3,09	3,68	4,42
		(30°C – 27/19)	EERd	1	6,85	6,42	6,08	5,48	5,51	4,87
			Leistungsaufnahme	kW	0,21	0,29	0,41	0,56	0,67	0,91
		Bedingung C	Pdc	kW	0,95	1,18	1,61	1,99	2,37	2,84
		(25°C – 27/19)	EERd	•	10,73	10,70	10,28	9,30	8,22	8,07
			Leistungsaufnahme	kW	0,09	0,11	0,16	0,21	0,29	0,35
		Bedingung D	Pdc	kW	0,	96	1,18	1,87	2,12	2,39
		(20°C – 27/19)	EERd		14,56	14,68	16,50	13,12	14,43	13,64
			Leistungsaufnahme	kW		0,07		0,14	0,15	0,18

2-1 Leistung u	nd Leistungsaufn	ahme			FTXM20M/ RXM20M9	FTXM25M/ RXM25M9	FTXM35M/ RXM35M9	FTXM42M/ RXM42M9	FTXM50M/ RXM50M9	FTXM60M/ RXM60M9
Saisonale Effizienz	Heizen	Energieeffizienzk	lasse			A+++		A-	++	A+
(gemäß EN14825)	(durchschnittliches	Pdesign		kW	2,30 2,40 2,50		2,50	4,00 4,		60
	Klima)	SCOP				5,10	I	4,	60	4,30
		SCOPnet			5,	13	5,14	4,	63	4,33
		Pdh Heizleistung	bei -10 °C	kW	2,24	2,30	2,35	3,68	4,	09
		Jährlicher Energi	everbrauch	kWh	632	659	686	1.216	1.400	1.496
	Erforderl. Reser Entwurfsbed. TOL		e-Heizleistung bei	kW	0,06	0,10	0,15	0,32	0,	51
			Tol (Temperaturbetriebs bereich)	°C			-	15		
			Pdh (deklarierte Heizleistung)	kW		2,59		3,90	4,	12
			COPd (deklarierter C	OP-Wert)		2,49		2,04	2,16	2,15
			Leistungsaufnahme	kW		1,04		1,	91	1,92
		TBivalent	Tbiv (bivalente Temperatur)	°C			-	7		
			Pdh (deklarierte Heizleistung)	kW	2,03	2,12	2,21	3,54	4,	07
			COPd (deklarierter C	OP-Wert)	3,57	3,51	3,50	2,70	2,90	2,67
			Leistungsaufnahme	kW	0,57	0,60	0,63	1,31	1,40	1,52
		Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,03	2,12	2,21	3,54	4,	07
			COPd (deklarierter C	OP-Wert)	3,57	3,51	3,50	2,70	2,90	2,67
			Leistungsaufnahme	kW	0,57	0,60	0,63	1,31	1,40	1,52
		Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,24	1,29	1,34	2,15	2,	48
			COPd (deklarierter C	OP-Wert)	5,10	5,06	5,03	4,71	4,65	4,29
			Leistungsaufnahme	kW	0,24	0,25	0,27	0,46	0,53	0,58
		Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	0,	91	0,95	1,38	1,	61
			COPd (deklarierter C	OP-Wert)	6,33	6,32	6,43	5,99	5,83	5,64
			Leistungsaufnahme	kW	0,	14	0,15	0,23	0,28	0,29
		Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW		1,09	•	1,54	1,36	1,52
			COPd (deklarierter C	OP-Wert)	8,	03	8,05	7,42	7,07	6,83
			Leistungsaufnahme	kW		0,14	ı	0,21	0,19	0,22

2-1 Leistung u	nd Leistungsaufna	ahme			FTXM20M/ RXM20M9	FTXM25M/ RXM25M9	FTXM35M/ RXM35M9	FTXM42M/ RXM42M9	FTXM50M/ RXM50M9	FTXM60M/ RXM60M9	
Saisonale Effizienz	Heizen (warmes	Energieeffizienzl	klasse				++				
(gemäß EN14825)	Klima)	Pdesignh		kW	1,24	1,29	1,34	2,15	2,	48	
,		SCOP		IXVV	6,12	6,21	6,28	5,93	5,84	5,58	
		SCOPnet			6,32	6,41	6,48	6,04	5,93	5,66	
		Jährlicher Energ	iovorbrauch	kWh	284	291	300	507	5,45	622	
					204	291			393	022	
		bei Entwurfsbedi	serve-Heizleistung in.	kW			0,	00			
		TOL	Tol (Temperaturbetriebs bereich)	°C	-15						
			Pdh (deklarierte Heizleistung)	kW		2,59		3,90	4,12		
			COPd (deklarierter COP-Wert)			2,49		2,04	2,16	2,15	
		Leistungsaufnahme	kW		1,04			91	1,92		
		TDivolont		°C		1,04			91	1,92	
		TBivalent	Tbiv (bivalente Temperatur)					2			
			Pdh (deklarierte Heizleistung)	kW	1,24	1,29	1,34	2,15	2,	48	
			COPd (deklarierter C	OP-Wert)	5,10	5,06	5,03	4,71	4,65	4,29	
			Leistungsaufnahme	kW	0,24	0,25	0,27	0,46	0,53	0,58	
		Bedingung B (2 °C)	Pdh (deklarierte Heizleistung)	kW	1,24	1,29	1,34	2,15	2,	48	
		` '	COPd (deklarierter C	OP-Wert)	5,10	5,06	5,03	4,71	4,65	4,29	
			Leistungsaufnahme	kW	0,24	0,25	0,27	0,46	0,53	0,58	
		Bedingung C (7 °C)	Pdh (deklarierte Heizleistung)	kW	0,		0,95	1,38	1,		
		(7 0)	COPd (deklarierter C	OD Wart)	6,33	6,32	6,43	5,99	5,83	5,64	
			Leistungsaufnahme	kW		14	0,43	0,23	0,28	0,29	
		Bedingung D	Pdh (deklarierte	kW	U,		0,15				
		(12 °C)	Heizleistung)			1,1		1,54	1,36	1,52	
			COPd (deklarierter C	OP-Wert)	8,	03	8,05	7,42	7,07	6,83	
			Leistungsaufnahme	kW		0,14		0,21	0,19	0,22	
Strom	Nennbetriebsstrom-	Kühlung		Α	2,1	2,6	4,4	5,11	6,26	7,90	
	50 Hz	Heizen		Α	2,2	2,5	4,8	5,93	6,56	8,50	
Pto (Thermostat off)	•			W			12	2,0		•	
Kühlung	Psb (Standby-Modus	Kühlung)		W			1	,0			
Ü	Cdc (Absinken Kühlu	ng)		1			0,	25			
Heizen	Cdh (Absinken Heize	en)						25			
Poff (AUS-Modus)	() ()	,		W				,0			
Kühlfunktion inklusiv				1				a			
Heizfunktion inklusiv								a			
Durchschnittliches Kl	ima inklusiv							a			
Kalte Saison inklusiv	ina mikusiv							ein			
Warme Saison inklus	iv							la			
Eco-Labellogo	IV							ein			
Eurovent	Sound power level	Cooling	Nom.	dBA	5	59	61		52	63	
	outdoor Schallleistungspege	Kühlung	Nom.	dBA	5	57	6	00	59	60	
	I innen Leitungslänge	Kühlung	Messbedingung	M			5	,0			
Nominale Effizienz	EER	<u>9</u>		1	4,57	4,50	4,23	3,75	3,68	3,39	
	COP					00	4,04	4,12	4,00	3,61	
	Jährlicher Energiever	rhrauch		kWh	220 (0,000)	280 (0,000)	400 (0,000)	1,12	-	0,01	
	Richtlinie zur Kühlen			IVAAII	220 (0,000)	200 (0,000)		<u> </u> A	-		
						4 A					
	ung	Heizen					,	Н			
Leistungsfaktor	Nennwert	Kühlen		%	91,10 (0,000)	93,90 (0,000)	79,90 (0,000)	95,30 (0,000)	94,70 (0,000)	97,40 (0,000)	
		Heizen		%	97,60	98,20	90,00		(0,000)	99,20	
		TICIZCII		/0	(0,000)	(0,000)	(0,000)	70,10	(0,000)	(0,000)	

Hinweise

Siehe separate Zeichnung für die elektrischen Daten

 $Nennk \"uhlle istungen \ basieren \ auf: Innentemp.: 27\ ^\circ C\ TK, \ 19\ ^\circ C\ FK; \ Außentemperatur: 35\ ^\circ C\ TK; \ \"aquivalente\ L\"ange\ K\"altemittelle itung: 5\ m; \ Niveauunterschied: 0\ m.$

Nennheizleistungen basieren auf: Innentemperatur: 20°C TK; Außentemperatur: 7°C TK, 6°C FK; äquivalente Kältemittel-Leitungslänge: 5 m; Niveauunterschied: 0 m.

2-1 Leistung ur	nd Leistungsa	aufnahme			FFA25A/RXM25M9	FFA35A/RXM35M9	FFA50A/RXM50M9	FFA60A/RXM60M9
Innengerät					FFA25A2VEB	FFA35A2VEB	FFA50A2VEB	FFA60A2VEB
Außengerät					RXM25M3V1B9	RXM35M3V1B9	RXM50M3V1B9	RXM60M3V1B9
Kühlleistung	Nom.			kW	2,50	3,40	5,00	5,70
				BTU/h	8.530	11.601	17.061	19.449
				kcal/h	2.150	2.923	4.299	4.901
Heizleistung	Nom.			kW	3,20	4,20	5,80	7,00
				BTU/h	10.919	14.331	19.790	23.885
				kcal/h	2.752	3.611	4.987	6.019
Leistungsaufnahme	Kühlung	Nom.		kW	0,55	0,89	1,54	1,87
	Heizen	Nom.		kW	0,82	1,20	1,66	2,05
Saisonale Effizienz	Kühlung	Energieeffizienzk	lasse		A	++	А	.+
(gemäß EN14825)		Pdesign		kW	2,50	3,40	5,00	5,70
		SEER			6,17	6,38	5,98	5,76
		Jährlicher Energie	everbrauch	kWh	142	186	292	347
		Bedingung A	Pdc	kW	2,50	3,40	5,00	5,70
		(35 °C – 27/19)	EERd		4,57	3,81	3,24	3,05
			Leistungsaufnahme	kW	0,55	0,89	1,54	1,87
		Bedingung B	Pdc	kW	1,84	2,51	3,69	4,20
		(30°C – 27/19)	EERd		6,60	5,79	5,38	5,34
			Leistungsaufnahme	kW	0,28	0,43	0,69	0,79
		Bedingung C	Pdc	kW	1,41	1,45	2,37	2,70
		(25°C – 27/19)	EERd		9,11	9,13	7,85	7,24
			Leistungsaufnahme	kW	0,	16	0,30	0,37
		Bedingung D	Pdc	kW	1,24	1,26	2,15	2,27
		(20°C – 27/19)	EERd		11,95	11,99	10,67	9,66
			Leistungsaufnahme	kW	0,10	0,11	0,20	0,24

2-1 Leistung	und Leistungsaufn	ahme			FFA25A/RXM25M9	FFA35A/RXM35M9	FFA50A/RXM50M9	FFA60A/RXM60M9
Saisonale Effizienz	Heizen	Energieeffizienzk	lasse		A	+	А	A+
(gemäß EN14825)	(durchschnittliches	Pdesign		kW	2,31	3,10	3,84	3,96
	Klima)	SCOP		•	4,24	4,10	3,90	4,04
		SCOPnet			4,27	4,19	3,92	4,05
		Pdh Heizleistung	bei -10 °C	kW	2,03	2,54	3,51	3,66
1		Jährlicher Energie	everbrauch	kWh	762	1.058	1.377	1.372
		Erforderl. Reserve Entwurfsbed.	ű	kW	0,28	0,56	0,33	0,30
	TOL		Tol (Temperaturbetriebs bereich)	°C			15	
			Pdh (deklarierte Heizleistung)	kW	2,0		3,68	3,93
			COPd (deklarierter C	OP-Wert)	2,23	2,10	1,99	2,05
			Leistungsaufnahme	kW	0,91	0,97	1,85	1,92
	TBivale	TBivalent	Tbiv (bivalente Temperatur)	°C		-	7	
			Pdh (deklarierte Heizleistung)	kW	2,0	04	3,40	3,50
			COPd (deklarierter C	OP-Wert)	3,00	2,89	2,62	2,84
			Leistungsaufnahme	kW	0,68	0,71	1,30	1,23
		Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,0	04	3,40	3,50
			COPd (deklarierter C	OP-Wert)	3,00	2,89	2,62	2,84
			Leistungsaufnahme	kW	0,68	0,71	1,30	1,23
		Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,;	24	2,09	2,14
			COPd (deklarierter C	OP-Wert)	4,16	4,00	3,97	4,12
			Leistungsaufnahme	kW	0,30	0,31	0,53	0,52
		Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	1,0	03	1,47	1,49
			COPd (deklarierter C	OP-Wert)	5,57	5,37	4,81	4,74
			Leistungsaufnahme	kW	0,	19	0,3	31
		Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW	1,;	21	1,71	1,74
			COPd (deklarierter C	OP-Wert)	6,90	6,65	5,94	5,88
			Leistungsaufnahme	kW	0,	18	0,29	0,30

2-1 Leistung un	d Leistungsaufn	ahme			FFA25A/RXM25M9	FFA35A/RXM35M9	FFA50A/RXM50M9	FFA60A/RXM60M9
Saisonale Effizienz	Heizen (warmes	Energieeffizienzk	lasse		A+	++	A-	++
(gemäß EN14825)	Klima)	Pdesignh		kW	1,:	24	2,09	2,14
		SCOP			5,29	5,10	4,78	4,74
		SCOPnet			5,37	5,18	4,82	4,78
		Jährlicher Energi	everbrauch	kWh	329	341	612	632
			erve-Heizleistung	kW			00	
		TOL	Tol	°C				
		102	(Temperaturbetriebs bereich)		-1		J	
			Pdh (deklarierte Heizleistung)	kW	2,		3,68	3,93
			COPd (deklarierter C		2,23	2,10	1,99	2,05
			Leistungsaufnahme	kW	0,91	0,97	1,85	1,91
		TBivalent	Tbiv (bivalente Temperatur)	°C		:	2	
			Pdh (deklarierte Heizleistung)	kW	1,	24	2,09	2,14
			COPd (deklarierter C	OP-Wert)	4,16	4,00	3,97	4,12
			Leistungsaufnahme	kW	0,30	0,31	0,53	0,52
		Bedingung B (2 °C)	Pdh (deklarierte Heizleistung)	kW	1,	24	2,09	2,14
			COPd (deklarierter C	OP-Wert)	4,16	4,00	3,97	4,12
			Leistungsaufnahme	kW	0,30	0,31	0,53	0,52
		Bedingung C (7 °C)	Pdh (deklarierte Heizleistung)	kW	1,		1,47	1,49
		(* -)	COPd (deklarierter C	OP-Wert)	5,57	5,37	4,81	4,74
			Leistungsaufnahme	kW	0,		0,:	
		Bedingung D (12 °C)	Pdh (deklarierte Heizleistung)	kW	1,	21	1,71	1,74
		,	COPd (deklarierter C	OP-Wert)	6,90	6,65	5,94 0,29	5,88 0,30
Pto (Thermostat off)			Leistungsaumanme	W	0,		,0	0,30
Kühlung	Psb (Standby-Modus	· Kühluna)		W	14		15	. 0
Kuriiuriy	Cdc (Absinken Kühlı			VV	14		<u>15</u> 25	1,0
Hoizon	Psb (Standby-Modus			W	1/		,	. 0
Heizen	Cdh (Absinken Heize			VV	14		15 25	1,0
Poff (AUS-Modus)	Cuii (Absilikeli Heizi	511)		W	1/	1,0	23	
Kühlfunktion inklusiv				VV	17		a a	
Heizfunktion inklusiv							a a	
Durchschnittliches Klim	na inklusiv						a	
Kalte Saison inklusiv	ia ilikiasiv						ein	
Warme Saison inklusiv							a	
Eco-Labellogo							ein	
Eurovent	Sound power level outdoor	Cooling	Nom.	dBA	59	61	62	63
	Schallleistungs- pegel innen	Kühlung	Nom.	dBA	48	51	56	60
	Leitungslänge	Kühlung	Messbedingung	M		<u>.</u> 5	,0	
Nominale Effizienz	EER	Training	Messbealinguity	1 '*'	4,57	3,81	3,24	3,05
THOMINGIO EMIZICIE	COP				3,90	3,50	3,49	3,41
	Jährlicher Energieve	rhrauch		kWh	273 (0,000)	446 (0,000)	771 (0,000)	934 (0,000)
	Richtlinie zur	Kühlen		VAAII	273 (0,000)	A A	771 (0,000)	934 (0,000) B
	Energiekennzeichnung				۸	^	D	U
	Litergrekerinzeichnung	Heizen			А		В	

Siehe separate Zeichnung für die elektrischen Daten

Siehe separate Zeichnung für den Betriebsbereich

Nennkühlleistungen basieren auf: Innentemp.: 27 °C TK, 19 °C FK; Außentemperatur: 35 °C TK; äquivalente Länge Kältemittelleitung: 5 m; Niveauunterschied: 0 m.

Nennheizleistungen basieren auf: Innentemperatur: 20°C TK; Außentemperatur: 7°C TK, 6°C FK; äquivalente Kältemittel-Leitungslänge: 5 m; Niveauunterschied: 0 m.

2-1 Leistung ui	nd Leistungsa	aufnahme			FDXM25F3/ RXM25M9	FDXM35F3/ RXM35M9	FDXM50F3/ RXM50M9	FDXM60F3/ RXM60M9
Innengerät					FDXM25F3V1B	FDXM35F3V1B	FDXM25F3V1B	FDXM60F3V1B
Außengerät					RXM25M3V1B9	RXM35M3V1B9	RXM50M3V1B9	RXM60M3V1B9
Kühlleistung	Nom.			kW	2,40	3,40	5,00	6,00
				BTU/h	8.189	11.601	17.061	20.473
				kcal/h	2.064	2.923	4.299	5.159
Heizleistung	leizleistung Nom.			kW	3,20	4,00	5,80	7,00
				BTU/h	10.919	13.649	19.790	23.885
				kcal/h	2.752	3.439	4.987	6.019
Leistungsaufnahme	Kühlung	Nom.		kW	0,64	1,14	1,63	2,05
	Heizen	Nom.		kW	0,80	1,15	1,87	2,18
Saisonale Effizienz	Kühlung	Energieeffizienzk	lasse		A+	А		-
(gemäß EN14825)		Pdesign	Pdesign		2,40	3,40		-
		SEER			5,68	5,26		-
		Jährlicher Energie	everbrauch	kWh	148	226		-
		Bedingung A	Pdc	kW	2,40	3,40	-	
		(35 °C – 27/19)	EERd		3,77	2,98		-
			Leistungsaufnahme	kW	0,64	1,14		-
		Bedingung B	Pdc	kW	1,76	2,50		-
		(30°C – 27/19)	EERd		5,38	4,08	-	
			Leistungsaufnahme	kW	0,33	0,61		-
		Bedingung C	Pdc	kW	1,27	1,61		-
		(25°C – 27/19)	EERd		8,92	8,05		-
			Leistungsaufnahme	kW	0,14	0,20		-
		Bedingung D	Pdc	kW	1,31	1,46		-
		(20°C – 27/19)	EERd		10,90	9,65		-
			Leistungsaufnahme	kW	0,12	0,15		-

2

Technische Daten

2

2-1 Leistung ui	nd Leistungsaufn	ahme			FDXM25F3/ RXM25M9	FDXM35F3/ RXM35M9	FDXM50F3/ RXM50M9	FDXM60F3/ RXM60M9
Saisonale Effizienz	Heizen	Energieeffizienzk	lasse		A+	А		-
(gemäß EN14825)	(durchschnittliches	Pdesign		kW	2,60	2,90		-
	Klima)	SCOP			4,24	3,88		-
		SCOPnet			4,27	3,90		-
		Pdh Heizleistung	bei -10 °C	kW	2,16	2,42		-
		Jährlicher Energieverbrauch		kWh	858	1.046		-
		Erforderl. Reserv Entwurfsbed.	Reserve-Heizleistung bei kW ed.		0,44	0,48		-
		TOL	Tol (Temperaturbetriebs bereich)	°C	-	15		-
			Pdh (deklarierte Heizleistung)	kW	1,93	2,15		-
			COPd (deklarierter C	OP-Wert)	2,20	2,01		-
		TBivalent	Leistungsaufnahme	kW	0,88	1,07		-
			Tbiv (bivalente Temperatur)	°C	-7			-
			Pdh (deklarierte Heizleistung)	kW	2,30	2,57		-
			COPd (deklarierter C	OP-Wert)	2,81	2,60		-
			Leistungsaufnahme	kW	0,82	0,99		-
		Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,30	2,57		-
			COPd (deklarierter C	OP-Wert)	2,81	2,60		-
			Leistungsaufnahme	kW	0,82	0,99		-
		Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,40	1,57		-
			COPd (deklarierter C	OP-Wert)	4,21	3,84		-
			Leistungsaufnahme	kW	0,33	0,41		-
		Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	1,00	1,02		-
			COPd (deklarierter C	OP-Wert)	5,54	4,94		-
			Leistungsaufnahme	kW	0,18	0,21		-
		Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW	1,17	1,19		-
			COPd (deklarierter C	OP-Wert)	6,84	6,08		-
			Leistungsaufnahme	kW	0,17	0,20		-

eizen (warmes ima)	Energieeffizienzkl. Pdesignh SCOP SCOPnet Jährlicher Energie Erforderliche Ress bei Entwurfsbedin TOL TBivalent	everbrauch erve-Heizleistung . Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kWh kWh °C		A++ 1,57 4,88 4,94 450 00 15 2,15		-
ima)	SCOP SCOPnet Jährlicher Energie Erforderliche Rese bei Entwurfsbedin TOL	Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kWh kW °C kW	5,38 5,46 365 0,	4,88 4,94 450 00 5 2,15		-
	SCOP SCOPnet Jährlicher Energie Erforderliche Rese bei Entwurfsbedin TOL	Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kW °C kW OP-Wert) kW	5,46 365 0,	4,94 450 000		-
	Jährlicher Energie Erforderliche Rese bei Entwurfsbedin TOL	Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kW °C kW OP-Wert) kW	365 0, 	450 000 15 2,15		-
	Erforderliche Ress bei Entwurfsbedin TOL	Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kW °C kW OP-Wert) kW	1,93	2,15		-
	Erforderliche Ress bei Entwurfsbedin TOL	Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	°C kW OP-Wert)	1,93	2,15		
	bei Entwurfsbedin TOL	Tol (Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kW OP-Wert) kW	1,93	2,15		
		(Temperaturbetriebs bereich) Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	kW OP-Wert) kW	1,93	2,15		
	TBivalent	Pdh (deklarierte Heizleistung) COPd (deklarierter C Leistungsaufnahme Tbiv (bivalente Temperatur)	OP-Wert)	2,20			
	TBivalent	Leistungsaufnahme Tbiv (bivalente Temperatur)	kW		2 01		
	TBivalent	Tbiv (bivalente Temperatur)		0,88	2,01		
	TBivalent	Temperatur)	°C.		1,07		
		Dally Adallah 1 1		:	2		
		Pdh (deklarierte Heizleistung)	kW	1,40	1,57		
	1	COPd (deklarierter C	OP-Wert)	4,21	3,84		
		Leistungsaufnahme	kW	0,33	0,41		
	Bedingung B (2 °C)	Pdh (deklarierte Heizleistung)	kW	1,40	1,57		
	, ,	COPd (deklarierter C	OP-Wert)	4,21	3,84		
		Leistungsaufnahme	kW	0,33	0,41		
	Bedingung C (7 °C)	Pdh (deklarierte Heizleistung)	kW	1,00	1,02		,
	(* -)	COPd (deklarierter C	OP-Wert)	5,54	4,94		-
		Leistungsaufnahme	kW	0,18	0,21		
	Bedingung D (12 °C)	Pdh (deklarierte Heizleistung)	kW	1,17	1,19		
		COPd (deklarierter C		6,84	6,08		
		Leistungsaumanne				0	0
sh (Standby Modus	Viihlung)						
			VV			-	
			\\/	1/		<u> </u>	
			VV			<u> </u>	·
uri (/ IDSII IKOTI I TOIZO	11)		W	1/		l	
			1				
nklusiv							
ound power level	Cooling	Nom.	dBA	59	61	62	63
challleistungs-	Kühlung	Nom.	dBA	5	3	55	56
	Kühluna	Messbedingung	M		5	,0	
ER	9		1 **	3.77			2,93
OP							3,21
	brauch		kWh				1.024 (0,000)
			1				C
							С
dd	c (Absinken Kühlu b (Standby-Modus h (Absinken Heize klusiv und power level door hallleistungs- gel innen tungslänge R	und power level door hallleistungs- gel innen tungslänge Kühlung R P hrlicher Energieverbrauch htlinie zur Kühlen	Leistungsaufnahme De (Standby-Modus Kühlung) Ce (Absinken Kühlung) De (Standby-Modus Heizen) The (Absinken Heizen) Relational Standby-Modus Heizen) Mom. Studie Stungs- Gel innen Stungslänge Kühlung Messbedingung Relational Stungslänge Kühlen Kühlen	www.c (Standby-Modus Kühlung) c (Absinken Kühlung) c (Standby-Modus Heizen) h (Absinken Heizen) www. klusiv und power level door nallleistungs- gel innen tungslänge Kühlung Messbedingung M R pp nrlicher Energieverbrauch htlinie zur Kühlen	Leistungsaufnahme kW 0,17 W 7 De (Standby-Modus Kühlung) De (Standby-Modus Heizen) De (Standby	Leistungsaufnahme KW 0,17 0,20	Leistungsaufnahme kW 0,17 0,20

Hinweise

See separate drawing for electrical data

See separate drawing for operation range

Nominal cooling capacities are based on: indoor temperature: 27°CDB, 19°CWB, outdoor temperature: 35°CDB, equivalent refrigerant piping: 5m, level difference: 0m.

Nominal heating capacities are based on: indoor temperature: 20°CDB, outdoor temperature: 7°CDB, 6°CWB, equivalent refrigerant piping: 5m, level difference: 0m.

2-1 Leistung ur	nd Leistungsa	ufnahme			FCAG35A/RXM35M9	FCAG50A/RXM50M9	FCAG60A/RXM60M9
Innengerät			FCAG35AVEB	FCAG50AVEB	FCAG60AVEB		
Außengerät				RXM35M3V1B9	RXM50M3V1B9	RXM60M3V1B9	
Kühlleistung	Nom.	Nom.			3,50	5,00	5,70
					11.943	17.061	19.449
				kcal/h	3.009	4.299	4.901
Heizleistung	Nom.			kW	4,20	6,00	7,00
				BTU/h	14.331	20.473	23.885
				kcal/h	3.611	5.159	6.019
Leistungsaufnahme	gsaufnahme Kühlung Nom.			kW	0,94	1,39	1,72
	Heizen	Nom.		kW	1,11	1,62	2,07
Saisonale Effizienz	Kühlung	Energieeffizienzk	lasse			A++	
(gemäß EN14825)		Pdesign		kW	3,50	5,00	5,70
		SEER			6,35	6,54	6,40
		Jährlicher Energie	everbrauch	kWh	193	266	312
		Bedingung A	Pdc	kW	3,50	5,00	5,68
		(35 °C – 27/19)	EERd		3,72	3,58	3,31
			Leistungsaufnahme	kW	0,94	1,40	1,72
		Bedingung B	Pdc	kW	2,60	3,67	4,16
		(30°C – 27/19)	EERd		5,33	5,17	4,67
			Leistungsaufnahme	kW	0,49	0,71	0,89
		Bedingung C	Pdc	kW	1,68	2,37	2,70
		(25°C – 27/19)	EERd		9,52	8,52	7,87
			Leistungsaufnahme	kW	0,18	0,28	0,34
		Bedingung D	Pdc	kW	1,49	1,87	1,62
		(20°C – 27/19)	EERd		12,25	10,69	12,03
			Leistungsaufnahme	kW	0,12	0,17	0,13

2-1	Leistung und	d Leistungsaufna	ahme			FCAG35A/RXM35M9	FCAG50A/RXM50M9	FCAG60A/RXM60M9	
	sonale Effizienz	Heizen	Energieeffizienzkl	asse		A++	А	.+	
(ge	mäß EN14825)	(durchschnittliches	Pdesign		kW	3,32	4,36	4,71	
		Klima)	SCOP			4,90	4,30	4,20	
			SCOPnet			4,95	4,32	4,22	
			Pdh Heizleistung I	bei -10 °C	kW	2,60	3,87	4,11	
			Jährlicher Energie	everbrauch	kWh	948	1.419	1.569	
			Erforderl. Reserve Entwurfsbed.	3	kW	0,72	0,49	0,60	
			TOL	Tol (Temperaturbetriebs bereich)	°C	-15			
				Pdh (deklarierte Heizleistung)	kW	2,04	3,89	4,04	
				COPd (deklarierter C		2,50	2,04	2,08	
				Leistungsaufnahme	kW	0,82	1,91	1,94	
			TBivalent	Tbiv (bivalente Temperatur)	°C		-7		
			Pdh (deklarierte Heizleistung)	kW	2,94	3,86	4,17		
				COPd (deklarierter C	OP-Wert)	3,10	2,81	2,56	
				Leistungsaufnahme	kW	0,95	1,37	1,63	
			Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,94	3,86	4,17	
				COPd (deklarierter C	OP-Wert)	3,10	2,81	2,56	
				Leistungsaufnahme	kW	0,95	1,37	1,63	
			Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,79	2,34	2,53	
				COPd (deklarierter C	OP-Wert)	4,98	4,38	4,30	
				Leistungsaufnahme	kW	0,36	0,53	0,59	
			Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	1,15	1,54	1,64	
				COPd (deklarierter C	OP-Wert)	6,20	5,31	5,28	
				Leistungsaufnahme	kW	0,19	0,29	0,31	
			Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW	1,24	1,79	1,46	
				COPd (deklarierter C	OP-Wert)	7,88	6,47	6,51	
				Leistungsaufnahme	kW	0,16	0,28	0,22	

Heizen (warmes Klima)	Energieeffizienzk						
Klima)		alasse			A+++		
Kiiilia)	Pdesignh		kW	1,79	2,34	2,53	
	SCOP		1	6,27	5,26	5,36	
	SCOPnet			6,36	5,31	5,40	
		everbrauch	kWh	400	623	661	
					0,00		
	TOL Tol (Temperaturbetriebs bereich)		°C		-15		
		Pdh (deklarierte Heizleistung)	kW	2,04	3,89	4,04	
		COPd (deklarierter C	OP-Wert)	2,50	2,04	2,08	
		Leistungsaufnahme	kW	0,82	1,91	1,94	
	TBivalent	Tbiv (bivalente Temperatur)	°C		2		
		Pdh (deklarierte	kW	1,79	2,34	2,53	
			OP-Wert)	4,98	4,38	4,30	
						0,59	
	Bedingung B	Pdh (deklarierte	kW	1,79	2,34	2,53	
	(2 0)		OP-Wert)	4 98	4 38	4,30	
						0,59	
	Bedingung C	Pdh (deklarierte	kW	1,15	1,54	1,64	
	(7 C)		OD Wort)	6.20	E 21	5,28	
						0,31	
	Bedingung D	Pdh (deklarierte	kW	1,24	1,79	1,46	
	(12 C)		OP-Wert)	7.88	6.47	6,51	
			kW	0,16	0,28	0,22	
I.	l	1 3	W		7,0		
Psb (Standby-Modus	s Kühluna)			14.0	1	7,0	
			1			1-	
	-		W	14.0	,	7,0	
			1			10	
1	,		W	14,0	-, -	-	
			1	·	Ja		
					Ja		
na inklusiv					Ja		
I							
Sound power level outdoor	Cooling	Nom.	dBA	61	62	63	
Schallleistungspege	Kühlung	Nom.	dBA	4	9	51	
	Kühlung	Messbedingung	М		5.0		
	. turnung	Mossibouniguity	1 ***	3 72		3,31	
						3,38	
	rhrauch		k\N/h			862 (0,000)	
			KAAII	471 (0,000)	l .	002 (0,000)	
						С	
	Cdc (Absinken Kühlu Psb (Standby-Modus Cdh (Absinken Heize na inklusiv Sound power level outdoor Schallleistungspege Leitungslänge EER COP	Erforderliche Resbei Entwurfsbedii TOL TBivalent Bedingung B (2 °C) Bedingung C (7 °C) Bedingung D (12 °C) Psb (Standby-Modus Kühlung) Cdc (Absinken Kühlung) Psb (Standby-Modus Heizen) Cdh (Absinken Heizen) Cdh (Absinken Heizen) Sound power level outdoor Schallleistungspege Kühlung Innen Leitungslänge Kühlung EER COP Jährlicher Energieverbrauch Richtlinie zur Kühlen	Cope Cooling Cope Cope	Erforderliche Reserve-Heizleistung bei Entwurfsbedin. TOL Tol (Tomperaturbetriebs bereich) Pdh (deklarierte kW Heizleistung) COPd (deklarierter COP-Wert) Leistungsaufnahme kW TBivalent Tbiv (bivalente remperatur) Pdh (deklarierte remperatur) River remperatur) Pdh (deklarierte remperatur) Eistungsaufnahme kw remperatur) Eistungsaufnahme kw remperatur remperat	Erforderliche Reserve-Heizleistung bei Entwurfsbedin. Tol	Enforderliche Reserve-Heizleistung bei Entwurfsbedin. TOL	

Hinweise

Siehe separate Zeichnung für die elektrischen Daten

Siehe separate Zeichnung für den Betriebsbereich

Nennkühlleistungen basieren auf: Innentemp.: 27 °C TK, 19 °C FK; Außentemperatur: 35 °C TK; äquivalente Länge Kältemittelleitung: 5 m; Niveauunterschied: 0 m.

Nennheizleistungen basieren auf: Innentemperatur: 20°C TK; Außentemperatur: 7°C TK, 6°C FK; äquivalente Kältemittel-Leitungslänge: 5 m; Niveauunterschied: 0 m.

2-1 Leistung ur	nd Leistungsa	aufnahme			FVXM25F/RXM25M9	FVXM35F/RXM35M9	FVXM50F/RXM50M9
Innengerät				FVXM25FV1B	FVXM35FV1B	FVXM50FV1B	
Außengerät				RXM25M3V1B9	RXM35M3V1B9	RXM50M3V1B9	
Kühlleistung	Nom.			kW	2,50	3,50	5,00
				BTU/h	8.530	11.943	17.061
				kcal/h	2.150	3.009	4.299
Heizleistung	eizleistung Nom.			kW	3,40	4,50	5,80
				BTU/h	11.601	15.355	19.790
				kcal/h	2.923	3.869	4.987
Leistungsaufnahme	Kühlung	Nom.		kW	0,60	1,09	1,55
	Heizen	Nom.		kW	0,77	1,19	1,60
Saisonale Effizienz	Kühlung	Energieeffizienzk	lasse			A++	
(gemäß EN14825)		Pdesign		kW	2,50	3,50	5,00
		SEER			7,20	6,43	6,80
		Jährlicher Energie	everbrauch	kWh	120	190	257
		Bedingung A	Pdc	kW	2,50	3,50	5,00
		(35 °C – 27/19)	EERd		4,20	3,21	3,23
			Leistungsaufnahme	kW	0,60	1,09	1,55
		Bedingung B	Pdc	kW	1,84	2,58	3,68
		(30°C – 27/19)	EERd		6,36	4,75	5,07
			Leistungsaufnahme	kW	0,29	0,54	0,73
		Bedingung C	Pdc	kW	1,17	1,68	2,38
		(25°C – 27/19)	EERd		8,43	7,62	8,44
			Leistungsaufnahme	kW	0,14	0,22	0,28
		Bedingung D	Pdc	kW	0,98	0,95	2,29
		(20°C – 27/19)	EERd		11,48	11,50	11,88
			Leistungsaufnahme	kW	0,09	0,08	0,19

2-1 Leistung ui	nd Leistungsaufn	ahme			FVXM25F/RXM25M9	FVXM35F/RXM35M9	FVXM50F/RXM50M9
Saisonale Effizienz	Heizen	Energieeffizienzk	lasse			A+	
(gemäß EN14825)	(durchschnittliches	Pdesign		kW	2,40	2,90	4,20
	Klima)	SCOP		•	4,56	4,	00
		SCOPnet			4,59	4,03	4,01
		Pdh Heizleistung	bei -10 °C	kW	2,23	2,40	2,23
		Jährlicher Energi	everbrauch	kWh	737	1.015	1.471
		Erforderl. Reserv Entwurfsbed.	e-Heizleistung bei	kW	0,17	0,50	1,97
		TOL	Tol (Temperaturbetriebs bereich)	°C		-15	
			Pdh (deklarierte Heizleistung)	kW	2,09	2,12	3,96
			COPd (deklarierter C	OP-Wert)	2,24	1,94	1,82
			Leistungsaufnahme	kW	0,93	1,09	2,18
		TBivalent	Tbiv (bivalente Temperatur)	°C		-7	
			Pdh (deklarierte Heizleistung)	kW	2,12	2,57	3,72
			COPd (deklarierter C	OP-Wert)	3,25	2,40	2,20
			Leistungsaufnahme	kW	0,65	1,07	1,69
		Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,12	2,57	3,72
			COPd (deklarierter C	OP-Wert)	3,25	2,40	2,20
			Leistungsaufnahme	kW	0,65	1,07	1,69
		Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,29	1,56	2,27
			COPd (deklarierter C	OP-Wert)	4,39	4,03	4,32
			Leistungsaufnahme	kW	0,29	0,39	0,53
		Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	0,83	1,03	1,80
			COPd (deklarierter C	OP-Wert)	5,79	5,11	5,13
			Leistungsaufnahme	kW	0,14	0,20	0,35
		Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW	0,78	1,08	1,91
			COPd (deklarierter C	OP-Wert)	7,27	7,24	6,25
			Leistungsaufnahme	kW	0,11	0,15	0,31

2-1 Leistung ur	nd Leistungsaufr	nahme			FVXM25F/RXM25M9	FVXM35F/RXM35M9	FVXM50F/RXM50M9
Saisonale Effizienz	Heizen (warmes	Energieeffizienz	klasse		A++	+	A++
(gemäß EN14825)	Klima)	Pdesignh		kW	1,29	1,56	2,27
		SCOP			5,81	5,44	4,96
		SCOPnet			5,93	5,52	5,01
		Jährlicher Energ	ieverbrauch	kWh	311	402	641
		Erforderliche Re	serve-Heizleistung	kW	0,00		
		bei Entwurfsbed	n. Tol		15		
		TOL		°C		-15	
			Pdh (deklarierte Heizleistung)	kW	2,09	2,12	3,96
			COPd (deklarierter C	OP-Wert)	2,24	1,94	1,82
			Leistungsaufnahme	kW	0,93	1,09	2,18
		TBivalent	Tbiv (bivalente Temperatur)	°C		2	
			Pdh (deklarierte Heizleistung)	kW	1,29	1,56	2,27
			COPd (deklarierter C	OP-Wert)	4,39	4,03	4,32
			Leistungsaufnahme	kW	0,29	0,39	0,53
		Bedingung B	Pdh (deklarierte	kW	1,29	1,56	2,27
		(2 °C)	Heizleistung) COPd (deklarierter COP-We		4,39	4,03	4,32
			Leistungsaufnahme	kW	0,29	0,39	0,53
		Bedingung C	Pdh (deklarierte	kW	0,83	1,03	1,80
		(7 °C)	Heizleistung)		·		
			COPd (deklarierter C		5,79	5,11	5,13
			Leistungsaufnahme	kW	0,14	0,20	0,35
		Bedingung D (12 °C)	Pdh (deklarierte Heizleistung)	kW	0,78	1,08	1,91
			COPd (deklarierter C		7,27	7,24	6,25
			Leistungsaufnahme	kW	0,11	0,15	0,31
Pto (Thermostat off)	,			W		8,0	
Kühlung	Psb (Standby-Modu	0.		W		2,0	
	Cdc (Absinken Küh	-				0,25	
Heizen	Psb (Standby-Modu			W		2,0	
	Cdh (Absinken Heiz	zen)				0,25	
Poff (AUS-Modus)				W	т	2,0	
Kühlfunktion inklusiv					Yes		a
Heizfunktion inklusiv					Yes		a
Durchschnittliches Klii	ma inklusiv				Yes		a
Kalte Saison inklusiv					No		ein
Warme Saison inklusi	V				Yes		a
Eco-Labellogo	1				No		ein
Eurovent	Sound power level outdoor	Cooling	Nom.	dBA	59	61	62
	Schallleistungs- pegel innen	Kühlung	Nom.	dBA	52		57
	Leitungslänge	Kühlung	Messbedingung	M		5,0	
Nominale Effizienz	EER				4,20	3,21	3,23
	COP				4,42	3,78	3,63
	Jährlicher Energiev	erbrauch		kWh	298 (0,000)	545 (0,000)	773 (0,000)
	Richtlinie zur	Kühlen			A		
	Energiekennzeichnung	Heizen				А	

Hinweise

See separate drawing for electrical data

See separate drawing for operation range

Nominal cooling capacities are based on: indoor temperature: 27°CDB, 19°CWB, outdoor temperature: 35°CDB, equivalent refrigerant piping: 5m, level difference: 0m.

Nominal heating capacities are based on: indoor temperature: 20°CDB, outdoor temperature: 7°CDB, 6°CWB, equivalent refrigerant piping: 5m, level difference: 0m.

2-1 Leistung ur	nd Leistungsa	ufnahme			FHA35A/RXM35M9	FHA50A/RXM50M9	FHA60A/RXM60M9
Innengerät			FHA35AVEB	FHA50AVEB	FHA60AVEB		
Außengerät				RXM35M3V1B9	RXM50M3V1B9	RXM60M3V1B9	
Kühlleistung	Nom.	Nom.			3,40	5,00	5,70
					11.601	17.061	19.449
				kcal/h	2.923	4.299	4.901
Heizleistung	Nom.	Nom.			4,00	6,00	7,20
					13.649	20.473	24.567
				kcal/h	3.439	5.159	6.191
Leistungsaufnahme	istungsaufnahme Kühlung Nom.			kW	0,91	1,56	1,73
	Heizen	Nom.		kW	0,98	1,79	2,17
Saisonale Effizienz					A++	Д	\+
(gemäß EN14825)		Pdesign		kW	3,40	5,00	5,70
		SEER			6,24	5,92	6,08
		Jährlicher Energi	everbrauch	kWh	191	295	328
		Bedingung A	Pdc	kW	3,40	5,00	5,70
		(35 °C – 27/19)	EERd		3,73	3,21	3,29
			Leistungsaufnahme	kW	0,91	1,56	1,73
		Bedingung B	Pdc	kW	2,51	3,69	4,43
		(30°C – 27/19)	EERd		5,28	5,04	4,88
			Leistungsaufnahme	kW	0,48	0,73	0,91
		Bedingung C	Pdc	kW	1,68	2,37	2,85
		(25°C – 27/19)	EERd		9,59	8,25	8,34
			Leistungsaufnahme	kW	0,18	0,29	0,34
		Bedingung D	Pdc	kW	1,64	2,31	2,26
		(20°C – 27/19)	EERd		11,71	10,39	10,97
			Leistungsaufnahme	kW	0,14	0,22	0,21

2-1 Leist	ung und Leistungsaut	nahme			FHA35A/RXM35M9	FHA50A/RXM50M9	FHA60A/RXM60M9
Saisonale Eff		Energieeffizienzk	lasse		A+		A
(gemäß EN1		Pdesign		kW	3,10	4,35	4,71
	Klima)	SCOP			4,43	3,86	3,87
		SCOPnet		_	4,47	3,87	3,89
		Pdh Heizleistung	bei -10 °C	kW	2,63	3,85	4,08
		Jährlicher Energi	everbrauch	kWh	979	1.578	1.704
		Erforderl. Reserv Entwurfsbed.	e-Heizleistung bei	kW	0,47	0,50	0,63
		TOL	Tol (Temperaturbetriebs bereich)	°C		-15	
			Pdh (deklarierte Heizleistung)	kW	2,47	3,86	3,92
			COPd (deklarierter COP-Wert)		2,23	1,	97
			Leistungsaufnahme	kW	1,11	1,96	1,99
		TBivalent	Tbiv (bivalente Temperatur)	°C		-7	
			Pdh (deklarierte Heizleistung)	kW	2,74	3,85	4,12
			COPd (deklarierter C	OP-Wert)	2,94	2,61	2,64
			Leistungsaufnahme	kW	0,93	1,48	1,56
		Bedingung A (- 7 °C)	Pdh (deklar. Heizleistung)	kW	2,74	3,85	4,12
			COPd (deklarierter C	OP-Wert)	2,94	2,61	2,64
			Leistungsaufnahme	kW	0,93	1,48	1,56
		Bedingung B (2 °C)	Pdh (deklar. Heizleistung)	kW	1,67	2,33	2,54
			COPd (deklarierter C	OP-Wert)	4,32	3,95	3,96
			Leistungsaufnahme	kW	0,39	0,59	0,64
		Bedingung C (7 °C)	Pdh (deklar. Heizleistung)	kW	1,14	1,54	1,63
			COPd (deklarierter C	OP-Wert)	5,83	4,62	4,60
			Leistungsaufnahme	kW	0,20	0,33	0,36
		Bedingung D (12 °C)	Pdh (deklar. Heizleistung)	kW	1,34	1,80	1,74
			COPd (deklarierter C	OP-Wert)	7,24	5,	65
			Leistungsaufnahme	kW	0,19	0,32	0,31

2-1 Leistung ur	nd Leistungsaufna	ahme			FHA35A/RXM35M9	FHA50A/RXM50M9	FHA60A/RXM60M9
Saisonale Effizienz	Heizen (warmes	Energieeffizienz	klasse		A+++	A+	A++
(gemäß EN14825)	Klima)	Pdesignh		kW	1,67	2,33	2,54
		SCOP			5,72	4,59	4,61
		SCOPnet			5,82	4,63	4,66
		Jährlicher Energ	gieverbrauch	kWh	409	711	771
			eserve-Heizleistung	kW		0,00	l
		bei Entwurfsbed					
		TOL	Tol (Temperaturbetriebs bereich)	°C		-15	
			Pdh (deklarierte Heizleistung)	kW	2,47	3,86	3,92
			COPd (deklarierter C	OP-Wert)	2,23	1,	97
			Leistungsaufnahme	kW	1,11	1,96	1,99
		TBivalent	Tbiv (bivalente Temperatur)	°C		2	
			Pdh (deklarierte Heizleistung)	kW	1,67	2,33	2,54
			COPd (deklarierter C	OP-Wert)	4,32	3,95	3,96
			Leistungsaufnahme	kW	0,39	0,59	0,64
		Bedingung B (2 °C)	Pdh (deklarierte Heizleistung)	kW	1,67	2,33	2,54
			COPd (deklarierter C	OP-Wert)	4,32	3,95	3,96
			Leistungsaufnahme	kW	0,39	0,59	0,64
		Bedingung C	Pdh (deklarierte	kW	1,14	1,54	1,63
		(7 °C)	Heizleistung)		.,	.,	1,25
			COPd (deklarierter C	OP-Wert)	5,83	4,62	4,60
			Leistungsaufnahme	kW	0,20	0,33	0,35
		Bedingung D (12 °C)	Pdh (deklarierte Heizleistung)	kW	1,34	1,80	1,74
			COPd (deklarierter C	OP-Wert)	7,24	5,	65
			Leistungsaufnahme	kW	0,19	0,32	0,31
Pto (Thermostat off)				W	·	10,0	· · · · · · · · · · · · · · · · · · ·
Kühlung	Psb (Standby-Modus	Kühlung)		W	14,0		5,0
	Cdc (Absinken Kühlu			1		0,25	-1-
Heizen	Psb (Standby-Modus	-		W	14,0		5,0
	Cdh (Absinken Heize			1		0,25	.,.
Poff (AUS-Modus)	1 . (,		W	14,0		-
Kühlfunktion inklusiv				1	,,-	Ja	
Heizfunktion inklusiv						Ja	
Durchschnittliches Klii	ma inklusiv					Ja	
Kalte Saison inklusiv						Nein	
Warme Saison inklusi	V					Ja	
Eco-Labellogo						Nein	
Eurovent	Sound power level outdoor	Cooling	Nom.	dBA	61	62	63
	Schallleistungspege Linnen	Kühlung	Nom.	dBA	53	Ę	54
	Leitungslänge	Kühlung	Messbedingung	М		5,0	
Nominale Effizienz	EER	rtailiang	Wessbearingung	1 ***	3,73	3,21	3,29
TVOTIMIQIO ETIIZIOTIZ	COP				4,08	3,35	3,32
	Jährlicher Energieve	rhrauch		kWh	456 (0,000)	780 (0,000)	867 (0,000)
	Richtlinie zur	Kühlen		IVAAII	456 (0,000) A	760 (0,000) B	A A
	Energiekennzeichn	Heizen			A		C A
	ung	пеідеп			А	•	•

Hinweise

Siehe separate Zeichnung für die elektrischen Daten

Siehe separate Zeichnung für den Betriebsbereich

Nennkühlleistungen basieren auf: Innentemperatur: 27 °C TK, 19 °C FK; Außentemperatur: 35 °C TK; äquivalente Länge Kältemittelleitung: 5 m; Niveauunterschied: 0 m.

Nennheizleistungen basieren auf: Innentemperatur: 20°C TK; Außentemperatur: 7°C TK, 6°C FK; äquivalente Kältemittel-Leitungslänge: 5 m; Niveauunterschied: 0 m.

2-2 Technische	e Daten				RXM20M9	RXM25M9	RXM35M9	RXM42M9	RXM50M9	RXM60M9
Leistungsregelung	Verfahren						Variabel	(Inverter)		
Gehäuse	Farbe						Elfenbe	einweiß		
Abmessungen	Gerät	Höhe		mm		550			735	
		Breite		mm		765			825	
		Tiefe		mm		285			300	
	Kompaktgerät	Höhe		mm		612			797	
		Breite		mm		906			992	
		Tiefe		mm		402			437	
Gewicht	Gerät	•		kg		32			47	
	Kompaktgerät			kg		34			50	
Verpackung	Gewicht			kg		-			3	
Wärmetauscher	Länge			mm		805			845	
	Reihen	Anzahl		•			2	2		
	Lamellenabstand	•		mm		1,40			1,80	
	Stufen	Anzahl		•		24			32	
	Passes	Quantity				3,1			5,8	
	Tube type					7Hi-XD			Hi-XA	
	Lamelle	Туре					Waffelförmige	Lamelle (PE)		
Verdichter	Model					1YC25GXD#0)		2YC40JXD#0)
	Ölmenge			cm ³		-			650	
	Тур			•		Vol	hermetischer S	Schwingverdic	hter	
	Ausgabe			W		800,0			1.300	
	Öltyp			•		-			FW68DA	
Ventilator	Тур					Flügelventilato	r	F	Tügelventilato	r_
	Luftstromvolumen	Kühlung	Nom.	m³/min		36,0			50,4	
				cfm		1.271			1.780	
		Heizen	Nom.	m³/min		28,3			40,4	
				cfm		999			1.427	
Ventilatormotor	Model				A	RW34W8P50[)A		ARW7406DA	١
	Abgabe			W		50			68	
	Drehzahl	Kühlung	Hoch	U/min		920			780	
			Nom.	U/min		920			780	
			Niedrig	U/min		800		6	90	620
		Heizen	Hoch	U/min		860			730	
			Nom.	U/min		800			730	
			Niedrig	U/min		400			530	
Sound power level	Cooling			dBA),000)	61 (0,000)		,000)	63 (0,000)
	Heating			dBA	59 (0),000)	61 (0,000)	62 (0	,000)	63 (0,000)
Schalldruckpegel	Kühlung	Nom.		dBA		16	49		48	
	Heizen	Nom.		dBA	4	17	49	48	1	19
Kältemittel	Тур						R-			
	Füllmenge			kg		0,76		1,30	1,40	1,45
				TCO ₂ eq		0,52		0,88	0,95	0,98
	GWP						67	5,0		

2-2 Technische	Daten				RXM20M9	RXM25M9	RXM35M9	RXM42M9	RXM50M9	RXM60M9
Rohrleitungsanschlüs	Liquid	OD		mm		6.35			6.4	
se	Gas	AD		mm		9,50			12,7	
	Ableitung	AD		mm			1	8		
	Leitungslänge	Max.	AG – IG	М		20,0			30	
		System	Unbefüllt	M		10,0			-	
	Additional refrigerant	charge		kg/m		0.02 (für Rohrleitung	slängen über	10 m)	
	Niveauunterschied	IG - AG	Max.	М			20	,0		
	Wärmeisolierung				Sowohl	Flüssigkeits-	als auch		-	
						Gasleitungen				

Standardzubehör : Ablassstopfen; Anzahl : 1; Standardzubehör : Installationsanleitung; Anzahl : 1; Standardzubehör : Etikett für Kältemittelfüllmenge; Anzahl : 1;

Standardzubehör : Mehrsprachige Etiketten über fluorierte Treibhausgase; Anzahl : 1;

2-3 Elektrische	Daten		RXM20M9	RXM25M9	RXM35M9	RXM42M9	RXM50M9	RXM60M9
Spannungsversorgung	Phase				1	~		
	Frequenz	Hz			5	0		
	Voltage	V			220	-240		
Wiring connections	For power supply	Quantity			;	3		
		Remark			Inklusive Er	dungskabel		
	Für Anschluss an Innengerät	Anzahl			4	1		
		Remark			Inklusive Er	dungskabel		

Hinweise

Enthält fluorierte Treibhausgase

Siehe separate Zeichnung für den Betriebsbereich

Siehe separate Zeichnung für die elektrischen Daten

RXM20-35M9

Beschränkungen für Ge	erätekombination		s	Stromversorgung			cor	MP	OF	М	IFN	Л
Außengerät	Innengerät	Hz	Spannu ng	Spannungsberei	MCA	MFA	RHz	RLA	kW	FLA	kW	FLA
RXM20M3V1B9	FTXM20M2V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	9,88	10	35	2,0 2,1 2,2	0,024	0,23	0,022	0,22
RXM25M3V1B9	FTXM25M2V1B	50 50	220 230	MAX. 50Hz 264V MIN. 50Hz 198V	10,82	13	46	2,6 2,7	0,024	0,23	0,022	0,22
RXM25M3V1B9	FFA25A2VEB	50 50 50	240 220 230	MAX. 50Hz 264V	10.79	13	40	2,8 2,3 2,5	0.023	0,23	0,050	0,20
IXIVIZJIVIJ V 103	1172372425	50 50	240 220	MIN. 50Hz 198V MAX. 50Hz 264V		13	40	2,6 2,1	0,023	,	0,030	,
RXM25M3V1B9	FDXM25F3V1B	50 50 50	230 240 220	MIN. 50Hz 198V	10,92	13	39	2,2 2,3 2,3	0,023	0,23	0,034	0,30
RXM25M3V1B9	FNA25A2VEB	50 50	230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,17	13	43	2,3 2,4 2,5	0,023	0,23	0,034	0,50
RXM35M3V1B9	FTXM35M2V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	10,86	13	60	4,2 4,4 4,6	0,023	0,23	0,028	0,25
RXM35M3V1B9	FCAG35AVEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	10,92	13	63	3,6 3,8 4,0	0,023	0,23	0,048	0,30
RXM35M3V1B9	FBA35A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	12,29	13	56	3,3 3,5 3,6	0,023	0,23	0,089	1,40
RXM35M3V1B9	FHA35AVEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,29	13	64	3,8 4,0 4,2	0,023	0,23	0,090	0,60
RXM35M3V1B9	FFA35A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	10,79	13	64	3,6 3,8 4,0	0,023	0,23	0,050	0,20
RXM35M3V1B9	FDXM35F3V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	10,92	13	65	3,6 3,8 3,9	0,023	0,23	0,034	0,30
RXM35M3V1B9	FNA35A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,17	13	65	3,6 3,8 3,9	0,023	0,23	0,034	0,50
ARXM25M3V1B9	ATXM25M2V1B	50 50 50	220 230	MAX. 50Hz 264V MIN. 50Hz 198V	10,82	13	46	2,6 2,7 2,8	0,024	0,23	0,022	0,22
ARXM35M3V1B9	ATXM35M2V1B	50 50 50	240 220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	10,86	13	60	4,2 4,4 4,6	0,023	0,23	0,028	0,25

Hinweise

1) Die RLA basiert auf den folgenden Bedingungen.

Außentemperatur 35°C DB

Innentemperatur 27°C DB / 19°C WB

2) Wählen Sie den Aderquerschnitt entsprechend MCA.

3) Die höchstzulässige Spannungsdifferenz zwischen den Phasen beträgt 2%.

4) Verwenden Sie einen Leistungsschalter statt einer Schmelzsicherung.

Symbole

MCA: Min. Amperezahl Stromkreis [A]

RLA: Nenn-Strombelastbarkeit [A]

OFM: Außenlüftermotor

FLA: Volllast Ampere [A]

kW: Nenn-Ausgangsleistung des Lüftermotors [kW]

RHz: Nominale Betriebsfrequenz [Hz]

IFM: Lüftermotor Innengerät

MFA: Max. Amperezahl Sicherung [A]

3 Elektrische Daten

3 - 1 Daten Elektrik

RXM42-60M9

Beschränkungen für	Gerätekombination		Stromy	ersorgung			cor	MP	OF	И	IFM	FLA
Außengerät	Innengerät	Hz	Spannung	Spannungsbe reich	MCA	MFA	RHz	RLA	kW	FLA	kW	
RXM42M3V1B9	FTXM42M2V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,24	13	56,5	4,8 5,0 5,2	0,068	0,34	0,028	0,22
RXM50M3V1B9	FTXM50M2V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,65	13	53,5	4,5 4,7 4,9	0,068	0,34	0,046	0,6
RXM50M3V1B9	FCAG50AVEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,35	13	64	5,8 6,0 6,3	0,068	0,34	0,048	0,3
RXM50M3V1B9	FBA50A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	12,45	13	59	5,8 6,1 6,4	0,068	0,34	0,089	1,4
RXM50M3V1B9	FHA50AVEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,65	13	64	6,0 6,3 6,5	0,068	0,34	0,090	0,6
RXM50M3V1B9	FFA50A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,45	13	62	6,0 6,2 6,5	0,068	0,34	0,050	0,4
RXM50M3V1B9	FDXM50F3V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,95	13	61	6,0 6,3 6,5	0,068	0,34	0,060	0,9
RXM50M3V1B9	FNA50A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,55	13	61	6,0 6,3 6,5	0,068	0,34	0,060	0,5
RXM60M3V1B9	FTXM60M2V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	13,53	16	73	5,5 5,7 5,9	0,068	0,34	0,046	0,6
RXM60M3V1B9	FCAG60AVEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	13,23	16	78	7,9 8,3 8,7	0,068	0,34	0,048	0,3
RXM60M3V1B9	FBA60A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	14,23	16	64	6,3 6,6 6,9	0,068	0,34	0,070	1,3
RXM60M3V1B9	FHA60AVEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	13,53	16	71	7,0 7,4 7,7	0,068	0,34	0,091	0,6
RXM60M3V1B9	FFA60A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	13,53	16	70	7,0 7,3 7,6	0,068	0,34	0,050	0,6
RXM60M3V1B9	FDXM60F3V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	13,83	16	72	7,4 7,7 8,1	0,068	0,34	0,060	0,9
RXM60M3V1B9	FNA60A2VEB	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	13,53	16	72	7,4 7,7 8,1	0,068	0,34	0,060	0,6
ARXM50M3V1B9	ATXM50M2V1B	50 50 50	220 230 240	MAX. 50Hz 264V MIN. 50Hz 198V	11,65	13	53,5	4,5 4,7 4,9	0,068	0,34	0,046	0,6

Hinweise

 Die RLA basiert auf den folgenden Bedingungen. Außentemperatur 35°C DB Innentemperatur 27°C DB / 19°C WB

Wählen Sie den Aderquerschnitt entsprechend MCA.

3) Die höchstzulässige Spannungsdifferenz zwischen den Phasen beträgt 2%.

Symbole

MCA: Min. Amperezahl Stromkreis [A]

MFA: Max. Amperezahl Sicherung [A]

RLA: Nenn-Strombelastbarkeit [A]

IFM: Lüftermotor Innengerät

FLA: Volllast Ampere [A]
kW: Nenn-Ausgangsleistung des Lüftermotors [kW]
RHz: Nominale Betriebsfrequenz [Hz]

nale Betriebsfrequenz [Hz] 3D110163

4 - 1 Kühl-/Heizleistungstabellen

FTXM20M / RXM20M9

Kühlen 220-240V 50Hz

AFR 11,1 BF 0.16

1	2									3									
	İ		20			25			30			32			35			40	
		TC	SHC	PI															
14	20	2,05	1,76	0,34	1,96	1,72	0,37	1,86	1,68	0,40	1,83	1,66	0,42	1,77	1,64	0,44	1,68	1,59	0,47
16	22	2,14	1,76	0,34	2,05	1,69	0,37	1,95	1,65	0,41	1,92	1,64	0,42	1,86	1,62	0,44	1,77	1,58	0,47
18	25	2,23	1,85	0,34	2,14	1,81	0,38	2,05	1,78	0,41	2,01	1,76	0,42	1,95	1,74	0,44	1,86	1,70	0,47
19	27	2,28	1,98	0,34	2,19	1,95	0,38	2,09	1,91	0,41	2,06	1,90	0,42	2,00	1,88	0,44	1,91	1,84	0,47
22	30	2,42	1,92	0,35	2,32	1,89	0,38	2,23	1,86	0,41	2,19	1,85	0,42	2,14	1,83	0,44	2,05	1,80	0,47
24	32	2,51	1,88	0,35	2,42	1,86	0,38	2,32	1,83	0,41	2,29	1,82	0,43	2,23	1,80	0,44	2,14	1,77	0,48

Heizen 220-240V 50Hz

AFR 10,4

2						4						
	-1	L 5	-1	LO		5		0		6	1	0
	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15	1,19	0,32	1,43	0,34	1,67	0,36	2,25	0,46	2,59	0,49	2,81	0,51
20	1,12	0,33	1,36	0,35	1,60	0,37	2,16	0,47	2,50	0,50	2,73	0,52
22	1,09	0,34	1,33	0,36	1,57	0,37	2,13	0,48	2,47	0,50	2,69	0,52
24	1,06	0,34	1,30	0,36	1,54	0,38	2,09	0,48	2,43	0,51	2,66	0,53
25	1,04	0,34	1,28	0,36	1,52	0,38	2,07	0,49	2,41	0,51	2,64	0,53
27	1,01	0,35	1,25	0,37	1,49	0,38	2,04	0,49	2,38	0,52	2,61	0,54

Hinweise

1. Die oben aufgeführten Leistungen gelten für folgende Bedingungen:

Entsprechende Kältemittelrohrlänge: 5.0 m Höhenunterschied: 0m

Die Zellen in Fettdruck geben die Standardbedingungen an.
 Nominale Betriebsfrequenz [Hz]

Symbole

TC: Gesamtleistung [kW]

PI: Leistungsaufnahme [kW]

SHC: Sensible Wärmeleistung [kW]

AFR: Luftdurchsatz [m³/min]

BF: Bypassfaktor

1 Innenlufttemperatur [°C DB]

2 Innenlufttemperatur [°C WB]

Außenlufttemperatur [°C DB]

4 Außenlufttemperatur [°C WB]

3D099850C

RXM25M9

Kühlen

50 Hz

220 - 240 V

AFR 8,7 BF 0,17

Innenter	nperatur							Au	ßent	empe	ratu	r [°C [DB]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	2,46	1,94	0,49	2,35	1,88	0,54	2,24	1,83	0,59	2,19	1,81	0,61	2,12	1,78	0,63	2,01	1,73	0,68
16,0	22	2,57	1,91	0,50	2,46	1,86	0,54	2,35	1,81	0,59	2,30	1,79	0,61	2,23	1,76	0,64	2,12	1,71	0,68
18,0	25	2,68	2,01	0,50	2,57	1,97	0,55	2,46	1,92	0,59	2,41	1,90	0,61	2,34	1,87	0,64	2,23	1,83	0,69
19,0	27	2,74	2,14	0,50	2,62	2,09	0,55	2,51	2,05	0,59	2,47	2,03	0,61	2,40	2,00	0,64	2,29	1,96	0,69
22,0	30	2,90	2,07	0,50	2,79	2,03	0,55	2,68	1,99	0,60	2,63	1,97	0,62	2,57	1,95	0,65	2,45	1,91	0,69
24,0	32	3,01	2,02	0,51	2,90	1,98	0,55	2,79	1,95	0,60	2,74	1,93	0,62	2,68	1,91	0,65	2,56	1,88	0,70

Heizen

50 Hz

220 - 240 V

AFR 8,7

Innentemperatur				Αι	ıßent	empe	ratur	[°C W	/B]			
EDB	-1	L 5	-1	LO	-	5	()	-	5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,49	0,64	1,79	0,68	2,09	0,71	2,39	0,74	3,31	0,78	3,60	0,81
20,0	1,40	0,66	1,70	0,69	2,00	0,73	2,30	0,76	3,20	0,80	3,49	0,83
22,0	1,36	0,67	1,66	0,70	1,96	0,73	2,26	0,77	3,16	0,81	3,44	0,83
24,0	1,32	0,68	1,62	0,71	1,92	0,74	2,22	0,77	3,11	0,81	3,40	0,84
25,0	1,30	0,68	1,60	0,71	1,90	0,75	2,20	0,78	3,09	0,82	3,38	0,84
27,0	1,27	0,69	1,57	0,72	1,87	0,75	2,17	0,79	3,05	0,83	3,33	0,85

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor
EWB : Eingangs-Feuchttemperatur (°C TK)

EWB : Eingangs-Feucntemperatur (*C IK)

EDB : Eingangs-Trockentemperatur (*C FK)

TC : Gesamtleistung [kW]

SHC : Sensible Wärmeleistung [kW]

PI : Leistungsaufnahme [kW]

Hinweise

- Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben

4 - 1 Kühl-/Heizleistungstabellen

FFA25A / RXM25M9

Kühlen 50 Hz 220 - 240 V AFR 9.0 BF 0,24

In	nentemperatur							A	ußent	tempe	ratur	[°C DE	3]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	2,56	1,95	0,42	2,44	1,89	0,46	2,33	1,84	0,50	2,28	1,81	0,52	2,21	1,78	0,54	2,10	1,72	0,58
16,0	22	2,68	1,92	0,42	2,56	1,86	0,46	2,44	1,81	0,50	2,40	1,79	0,52	2,33	1,76	0,54	2,21	1,71	0,58
18,0	25	2,79	2,01	0,42	2,68	1,96	0,46	2,56	1,92	0,51	2,51	1,90	0,52	2,44	1,87	0,55	2,33	1,82	0,59
19,0	27	2,85	2,13	0,43	2,73	2,08	0,47	2,62	2,04	0,51	2,57	2,02	0,52	2,50	1,99	0,55	2,38	1,94	0,59
22,0	30	3,02	2,06	0,43	2,91	2,02	0,47	2,79	1,97	0,51	2,74	1,96	0,53	2,67	1,93	0,55	2,56	1,89	0,59
24,0	32	3,14	2,01	0,43	3,02	1,97	0,47	2,90	1,93	0,51	2,86	1,91	0,53	2,79	1,89	0,55	2,67	1,85	0,59

Heizen 50 Hz 220 - 240 V AFR 9,0

Innentemperatur				Α	ußent	tempe	ratur	[°C WI	B]			
EDB	-1	L5	-1	LO	-	5	•)	(5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,49	0,66	1,79	0,69	2,09	0,73	2,39	0,76	3,31	0,80	3,60	0,83
20,0	1,40	0,68	1,70	0,71	2,00	0,75	2,30	0,78	3,20	0,82	3,49	0,85
22,0	1,36	0,69	1,66	0,72	1,96	0,75	2,26	0,79	3,16	0,83	3,44	0,85
24,0	1,32	0,69	1,62	0,73	1,92	0,76	2,22	0,79	3,11	0,84	3,40	0,86
25,0	1,30	0,70	1,60	0,73	1,90	0,76	2,20	0,80	3,09	0,84	3,38	0,87
27,0	1,27	0,70	1,57	0,74	1,87	0,77	2,17	0,81	3,05	0,85	3,33	0,87

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor EWB : Eingangs-Feuchttemperatur (°C TK)

EDB : Eingangs-Trockentemperatur (°C FK)
TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- In der Abbildung zeigt die Markierung mit □ die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110082

FNA25A / RXM25M9

Kühlen 50 Hz 220 - 240 V

Innen	temperatur							Αι	ıßent	empe	ratur	[°C [B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	2,66	2,04	0,52	2,54	1,98	0,58	2,42	1,92	0,63	2,37	1,90	0,65	2,30	1,86	0,68	2,18	1,81	0,73
16,0	22	2,78	2,00	0,53	2,66	1,95	0,58	2,54	1,89	0,63	2,49	1,87	0,65	2,42	1,84	0,68	2,30	1,78	0,73
18,0	25	2,90	2,11	0,53	2,78	2,06	0,58	2,66	2,00	0,63	2,61	1,98	0,65	2,54	1,95	0,68	2,42	1,90	0,73
19,0	27	2,96	2,23	0,53	2,84	2,18	0,58	2,72	2,13	0,63	2,67	2,11	0,65	2,60	2,08	0,68	2,48	2,04	0,73
22,0	30	3,14	2,16	0,54	3,02	2,11	0,59	2,90	2,07	0,64	2,85	2,05	0,66	2,78	2,02	0,69	2,66	1,98	0,74
24,0	32	3,26	2,10	0,54	3,14	2,06	0,59	3,02	2,02	0,64	2,97	2,01	0,66	2,90	1,98	0,69	2,78	1,94	0,74

AFR	8,7
BF	0,17

Heizen

50 Hz

220 - 240 V

Innentemperatur				Au	Bent	empe	ratur	[°C V	VB]			
EDB	-1	L5	-1	LO	-	5	()	(5	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,49	0,64	1,79	0,68	2,09	0,71	2,39	0,74	3,31	0,78	3,60	0,81
20,0	1,40	0,66	1,70	0,69	2,00	0,73	2,30	0,76	3,20	0,80	3,49	0,83
22,0	1,36	0,67	1,66	0,70	1,96	0,73	2,26	0,77	3,16	0,81	3,44	0,83
24,0	1,32	0,68	1,62	0,71	1,92	0,74	2,22	0,77	3,11	0,81	3,40	0,84
25,0	1,30	0,68	1,60	0,71	1,90	0,75	2,20	0,78	3,09	0,82	3,38	0,84
27,0	1,27	0,69	1,57	0,72	1,87	0,75	2,17	0,79	3,05	0,83	3,33	0,85

AFR 8,7

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)
TC : Gesamtleistung [kW]

TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinwaisa

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit

 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5.Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FVXM25F / RXM25M9

Kühlen 50 Hz 220 - 240 V

Innente	mperatur							Α	ußent	empe	eratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	2,56	2,00	0,46	2,44	1,95	0,50	2,33	1,89	0,55	2,28	1,87	0,56	2,21	1,84	0,59	2,10	1,78	0,64
16,0	22	2,68	1,97	0,46	2,56	1,92	0,51	2,44	1,87	0,55	2,40	1,84	0,57	2,33	1,81	0,59	2,21	1,76	0,64
18,0	25	2,79	2,08	0,46	2,68	2,03	0,51	2,56	1,98	0,55	2,51	1,96	0,57	2,44	1,93	0,60	2,33	1,89	0,64
19,0	27	2,85	2,21	0,47	2,73	2,16	0,51	2,62	2,11	0,55	2,57	2,09	0,57	2,50	2,07	0,60	2,38	2,02	0,64
22,0	30	3,02	2,13	0,47	2,91	2,09	0,51	2,79	2,05	0,56	2,74	2,03	0,58	2,67	2,01	0,60	2,56	1,97	0,65
24,0	32	3,14	2,08	0,47	3,02	2,04	0,52	2,90	2,01	0,56	2,86	1,99	0,58	2,79	1,97	0,60	2,67	1,93	0,65

8,2 BF 0,1

50 Hz Heizen

Innentemperatur				Αı	ußent	empe	ratur	[°C W	B]			
EDB	-1	L 5	-1	LO	-	5	()	•	5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,58	0,62	1,90	0,65	2,22	0,68	2,54	0,71	3,52	0,75	3,82	0,78
20,0	1,48	0,64	1,80	0,67	2,12	0,70	2,44	0,73	3,40	0,77	3,71	0,79
22,0	1,44	0,64	1,76	0,67	2,08	0,71	2,40	0,74	3,35	0,78	3,66	0,80
24,0	1,41	0,65	1,72	0,68	2,04	0,71	2,36	0,75	3,31	0,78	3,61	0,81
25,0	1,39	0,65	1,70	0,69	2,02	0,72	2,34	0,75	3,28	0,79	3,59	0,81
27,0	1,35	0,66	1,67	0,69	1,98	0,72	2,30	0,76	3,24	0,79	3,54	0,82

220 - 240 V

AFR 8,8

Symbole

AFR BF Luftdurchsatz [m3/min]

Bypassfaktor Eingangs-Feuchttemperatur (°C TK) EWB EDB Eingangs-Trockentemperatur (°C FK)

TC Gesamtleistung [kW] Sensible Wärmeleistung [kW] Leistungsaufnahme [kW] SHC PI

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der
- 3. Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: Om
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110093

FBA35A / RXM35M9

Kühlen	50 Hz	220 - 240 V	AFR	15,0
			BF	0,08

Innenter	mperatur							Auß	enten	npera	itur [ˈ	°C DB]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	3,59	3,18	0,67	3,42	3,11	0,73	3,26	3,03	0,80	3,19	3,00	0,82	3,10	2,96	0,86	2,93	2,89	0,93
16,0	22	3,75	3,13	0,67	3,58	3,06	0,74	3,42	2,99	0,80	3,36	2,97	0,83	3,26	2,92	0,86	3,10	2,86	0,93
18,0	25	3,91	3,35	0,68	3,75	3,29	0,74	3,58	3,22	0,80	3,52	3,20	0,83	3,42	3,16	0,87	3,26	3,10	0,93
19,0	27	3,99	3,60	0,68	3,83	3,54	0,74	3,66	3,48	0,81	3,60	3,45	0,83	3,50	3,42	0,87	3,34	3,36	0,93
22,0	30	4,23	3,50	0,68	4,07	3,44	0,75	3,90	3,39	0,81	3,84	3,37	0,84	3,74	3,34	0,88	3,58	3,28	0,94
24,0	32	4,39	3,43	0,69	4,23	3,38	0,75	4,07	3,33	0,82	4,00	3,31	0,84	3,90	3,28	0,88	3,74	3,23	0,94

AFR 15,0 Heizen 50 Hz 220 - 240 V

Innentemperatur				Au	3ente	mper	atur [°C W	B]			
EDB	-	15	-1	LO	-	5	•)	(5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,86	0,80	2,23	0,84	2,61	0,88	2,98	0,92	4,14	0,97	4,50	1,01
20,0	1,75	0,82	2,12	0,86	2,50	0,90	2,87	0,95	4,00	1,00	4,36	1,03
22,0	1,70	0,83	2,07	0,87	2,45	0,91	2,82	0,95	3,94	1,00	4,31	1,04
24,0	1,65	0,84	2,03	0,88	2,40	0,92	2,78	0,96	3,89	1,01	4,25	1,05
25,0	1,63	0,85	2,01	0,89	2,38	0,93	2,76	0,97	3,86	1,02	4,22	1,05
27,0	1,59	0,85	1,96	0,90	2,33	0,94	2,71	0,98	3,81	1,03	4,17	1,06

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der
- Leistungsaufnahme.
 3. Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

Symbole

Luftdurchsatz [m³/min] Bypassfaktor

EWB EDB

bypassfaktor Eingangs-Feuchttemperatur (°C TK) Eingangs-Trockentemperatur (°C FK) Gesamtleistung [kW] Sensible Wärmeleistung [kW] Leistungsaufnahme [kW] SHC PI

4 - 1 Kühl-/Heizleistungstabellen

FCAG35A / RXM35M9

Kühlen 50 Hz 220 - 240 V

Innente	mperatur							Α	ußen	empe	eratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	3,08	2,27	0,63	3,08	2,27	0,72	3,08	2,27	0,81	3,08	2,27	0,85	3,01	2,24	0,89	2,85	2,16	0,96
16,0	22	3,64	2,44	0,70	3,48	2,36	0,76	3,32	2,28	0,83	3,26	2,25	0,86	3,17	2,21	0,90	3,01	2,13	0,96
18,0	25	3,80	2,54	0,70	3,64	2,46	0,77	3,48	2,39	0,83	3,42	2,36	0,86	3,32	2,32	0,90	3,16	2,25	0,97
19,0	27	3,87	2,66	0,70	3,72	2,59	0,77	3,56	2,52	0,84	3,49	2,49	0,86	3,40	2,45	0,90	3,24	2,39	0,97
22,0	30	4,11	2,56	0,71	3,95	2,50	0,77	3,79	2,44	0,84	3,73	2,41	0,87	3,63	2,38	0,91	3,48	2,32	0,97
24,0	32	4,27	2,49	0,71	4,11	2,43	0,78	3,95	2,37	0,85	3,89	2,35	0,87	3,79	2,32	0,91	3,63	2,26	0,98

Heizen 50 Hz 220 - 240 V AFR 12,5

Innentemperatur				Α	ußent	empe	ratur	[°C W	B]			
EDB		15	-1	LO	-	5		0		5	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,95	0,97	2,35	1,01	2,74	1,06	3,13	1,11	4,34	1,17	4,72	1,21
20,0	1,83	0,99	2,23	1,04	2,62	1,09	3,01	1,14	4,20	1,20	4,58	1,24
22,0	1,78	1,00	2,18	1,05	2,57	1,10	2,97	1,15	4,14	1,21	4,52	1,25
24,0	1,74	1,01	2,13	1,06	2,52	1,11	2,92	1,16	4,08	1,22	4,46	1,26
25,0	1,71	1,02	2,11	1,07	2,50	1,12	2,89	1,17	4,06	1,23	4,43	1,27
27,0	1,66	1,03	2,06	1,08	2,45	1,13	2,85	1,18	4,00	1,24	4,38	1,28

Symbole

AFR Luftdurchsatz [m³/min]

Bypassfaktor

Eingangs-Feuchttemperatur (°C TK)

TC Gesamtleistung [kW] SHC : Sensible Wärmeleistung [kW] : Leistungsaufnahme [kW]

Hinweise

- Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung erwendet werden).
- Falls die sensible W\u00e4rmekapazit\u00e4t nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Ann\u00e4herung zwischen zwei Werten im direkten Verh\u00e4ltnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen:

Entsprechende Kältemittelrohrlänge: 5 m

6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110075

FDXM35F3 / RXM35M9

220 - 240 V Kühlen 50 Hz

Innenten	nperatur							Au	ßente	empe	ratu	r [°C [DB]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	2,96	2,19	0,78	2,96	2,19	0,89	2,96	2,19	1,01	2,96	2,19	1,05	2,96	2,19	1,13	2,85	2,13	1,22
16,0	22	3,64	2,42	0,89	3,48	2,34	0,97	3,32	2,26	1,06	3,26	2,23	1,09	3,17	2,18	1,14	3,01	2,11	1,23
18,0	25	3,80	2,51	0,89	3,64	2,43	0,98	3,48	2,36	1,06	3,42	2,33	1,10	3,32	2,29	1,15	3,16	2,22	1,23
19,0	27	3,87	2,63	0,89	3,72	2,55	0,98	3,56	2,48	1,06	3,49	2,46	1,10	3,40	2,42	1,15	3,24	2,35	1,23
22,0	30	4,11	2,52	0,90	3,95	2,46	0,99	3,79	2,40	1,07	3,73	2,38	1,11	3,63	2,34	1,16	3,48	2,28	1,24
24,0	32	4,27	2,45	0,91	4,11	2,39	0,99	3,95	2,34	1,08	3,89	2,32	1,11	3,79	2,28	1,16	3,63	2,23	1,25

Heizen 50 Hz 220 - 240 V AFR 8,7

Innentemperatur				Au	Bente	mpe	ratur	[°C V	VB]			
EDB	-:	15	-1	LO	-	5	(0	•	5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,86	0,92	2,23	0,97	2,61	1,02	2,98	1,07	4,14	1,12	4,50	1,16
20,0	1,75	0,95	2,12	1,00	2,50	1,05	2,87	1,09	4,00	1,15	4,36	1,19
22,0	1,70	0,96	2,07	1,01	2,45	1,06	2,82	1,10	3,94	1,16	4,31	1,20
24,0	1,65	0,97	2,03	1,02	2,40	1,07	2,78	1,11	3,89	1,17	4,25	1,21
25,0	1,63	0,98	2,01	1,02	2,38	1,07	2,76	1,12	3,86	1,18	4,22	1,21
27,0	1,59	0,99	1,96	1,03	2,33	1,08	2,71	1,13	3,81	1,19	4,02	1,21

Symbole

BF

AFR Luftdurchsatz [m³/min] Bypassfaktor

EWB Eingangs-Feuchttemperatur (°C TK) EDB Eingangs-Trockentemperatur (°C FK)

TC Gesamtleistung [kW] SHC Sensible Wärmeleistung [kW] ы Leistungsaufnahme [kW]

Hinweise

- Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des
- Innenventilators enthalten. In der Abbildung zeigt die Markierung mit 🏻 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden). Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FFA35A / RXM35M9

Kühlen 50 Hz 220 - 240 V AFR 10,0 BF 0,25

Innenten	nperatur						Außentemperatur [°C DB]												
EWB	EDB	20			25			30			32			35			40		
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	3,08	2,27	0,62	3,08	2,27	0,71	3,08	2,27	0,80	3,08	2,27	0,84	3,01	2,24	0,88	2,85	2,16	0,95
16,0	22	3,64	2,44	0,69	3,48	2,36	0,75	3,32	2,28	0,82	3,26	2,25	0,85	3,17	2,21	0,89	3,01	2,13	0,95
18,0	25	3,80	2,54	0,69	3,64	2,46	0,76	3,48	2,39	0,82	3,42	2,36	0,85	3,32	2,32	0,89	3,16	2,25	0,96
19,0	27	3,87	2,66	0,69	3,72	2,59	0,76	3,56	2,52	0,83	3,49	2,49	0,85	3,40	2,45	0,89	3,24	2,39	0,96
22,0	30	4,11	2,56	0,70	3,95	2,50	0,77	3,79	2,44	0,83	3,73	2,41	0,86	3,63	2,38	0,90	3,48	2,32	0,96
24,0	32	4,27	2,49	0,70	4,11	2,43	0,77	3,95	2,37	0,84	3,89	2,35	0,86	3,79	2,32	0,90	3,63	2,26	0,97

Heizen 50 Hz 220 - 240 V AFR 10,0

Innentemperatur	Außentemperatur [°C WB]												
EDB	-15		-10		-5		0		6		1	0	
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	
15,0	1,95	0,97	2,35	1,01	2,74	1,06	3,13	1,11	4,34	1,17	4,72	1,21	
20,0	1,83	0,99	2,23	1,04	2,62	1,09	3,01	1,14	4,20	1,20	4,58	1,24	
22,0	1,78	1,00	2,18	1,05	2,57	1,10	2,97	1,15	4,14	1,21	4,52	1,25	
24,0	1,74	1,01	2,13	1,06	2,52	1,11	2,92	1,16	4,08	1,22	4,46	1,26	
25,0	1,71	1,02	2,11	1,07	2,50	1,12	2,89	1,17	4,06	1,23	4,43	1,27	
27,0	1,66	1,03	2,06	1,08	2,45	1,13	2,85	1,18	4,00	1,24	4,38	1,28	

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)

 TC
 :
 Gesamtleistung [kW]

 SHC
 :
 Sensible Wärmeleistung [kW]

 PI
 :
 Leistungsaufnahme [kW]

EDB : Eingangs-Trockentemperatur (°C FK)

Hinwoise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende K\u00e4ltenittelrohrl\u00e4nge: 5 m \u00c4\u00e4beschied \u00dcom
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110083

FHA35A / RXM35M9

Kühlen 50 Hz 220 - 240 V

Innentemperatur			Außentemperatur [°C DB]																	
EWB	EDB		20			25			30			32			35			40		
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	
14,0	20	3,48	2,89	0,70	3,33	2,82	0,77	3,17	2,75	0,83	3,10	2,72	0,86	3,01	2,67	0,90	2,85	2,60	0,97	
16,0	22	3,64	2,85	0,70	3,48	2,78	0,77	3,32	2,71	0,84	3,26	2,68	0,87	3,17	2,64	0,91	3,01	2,57	0,97	
18,0	25	3,80	3,03	0,71	3,64	2,96	0,77	3,48	2,90	0,84	3,42	2,87	0,87	3,32	2,83	0,91	3,16	2,77	0,98	
19,0	27	3,87	3,23	0,71	3,72	3,17	0,78	3,56	3,11	0,84	3,49	3,08	0,87	3,40	3,05	0,91	3,24	2,99	0,98	
22,0	30	4,11	3,13	0,72	3,95	3,08	0,78	3,79	3,02	0,85	3,73	3,00	0,88	3,63	2,97	0,92	3,48	2,92	0,98	
24,0	32	4,27	3,06	0,72	4,11	3,01	0,79	3,95	2,96	0,85	3,89	2,95	0,88	3,79	2,92	0,92	3,63	2,87	0,99	

AFR 14,0 BF 0,17

Heizen

50 Hz

220 - 240 V

Innentemperatur	Außentemperatur [°C WB]												
EDB	-15		-10		-5		0		6		1	0	
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	
15,0	1,86	0,79	2,23	0,83	2,61	0,87	2,98	0,91	4,14	0,96	4,50	0,99	
20,0	1,75	0,81	2,12	0,85	2,50	0,89	2,87	0,93	4,00	0,98	4,36	1,01	
22,0	1,70	0,82	2,07	0,86	2,45	0,90	2,82	0,94	3,94	0,99	4,31	1,02	
24,0	1,65	0,83	2,03	0,87	2,40	0,91	2,78	0,95	3,89	1,00	4,25	1,03	
25,0	1,63	0,83	2,01	0,87	2,38	0,91	2,76	0,95	3,86	1,00	4,22	1,03	
27,0	1,59	0,84	1,96	0,88	2,33	0,92	2,71	0,96	3,81	1,01	4,17	1,04	

AFR 14,0

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)
TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FNA35A / RXM35M9

Kühlen 50 Hz 220 - 240 V

Innenter	mperatur							Αu	ßent	empe	eratui	· [°C [DB]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	2,96	2,19	0,75	2,96	2,19	0,85	2,96	2,19	0,96	2,96	2,19	1,01	2,96	2,19	1,08	2,85	2,13	1,17
16,0	22	3,64	2,42	0,85	3,48	2,34	0,93	3,32	2,26	1,01	3,26	2,23	1,04	3,17	2,18	1,09	3,01	2,11	1,17
18,0	25	3,80	2,51	0,85	3,64	2,43	0,93	3,48	2,36	1,02	3,42	2,33	1,05	3,32	2,29	1,10	3,16	2,22	1,18
19,0	27	3,87	2,63	0,86	3,72	2,55	0,94	3,56	2,48	1,02	3,49	2,46	1,05	3,40	2,42	1,10	3,24	2,35	1,18
22,0	30	4,11	2,52	0,86	3,95	2,46	0,94	3,79	2,40	1,03	3,73	2,38	1,06	3,63	2,34	1,11	3,48	2,28	1,19
24,0	32	4,27	2,45	0,87	4,11	2,39	0,95	3,95	2,34	1,03	3,89	2,32	1,06	3,79	2,28	1,11	3,63	2,23	1,19

AFR 8,7 BF 0,17

Heizen 50 Hz 220 - 240 V

Innentemperatur				Α	ußent	empe	ratur	[°C W	B]			
EDB	-1	.5	-1	LO	-	5	0)	•	ŝ	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	1,86	0,92	2,23	0,97	2,61	1,02	2,98	1,07	4,14	1,12	4,50	1,16
20,0	1,75	0,95	2,12	1,00	2,50	1,05	2,87	1,09	4,00	1,15	4,36	1,19
22,0	1,70	0,96	2,07	1,01	2,45	1,06	2,82	1,10	3,94	1,16	4,31	1,20
24,0	1,65	0,97	2,03	1,02	2,40	1,07	2,78	1,11	3,89	1,17	4,25	1,21
25,0	1,63	0,98	2,01	1,02	2,38	1,07	2,76	1,12	3,86	1,18	4,22	1,21
27,0	1,59	0,99	1,96	1,03	2,33	1,08	2,71	1,13	3,81	1,19	4,02	1,21

AFR 8,7

Symbole

AFR Luftdurchsatz [m³/min]

F Bypassfaktor

EWB Eingangs-Feuchttemperatur (°C TK)
EDB Eingangs-Trockentemperatur (°C FK)
TC Gesamtleistung (kW)

TC Gesamtleistung [kW]
SHC Sensible Wärmeleistung [kW]
Pl Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des
- 2. In der Abbildung zeigt die Markierung mit 🛛 die Nennkapazität und den Nennkoeffizient der
- 3. Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende K\u00e4lterlichterlicht ber ich der bedingungen: H\u00f6henunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110090

FVXM35F / RXM35M9

Kühlen 50 Hz 220 - 240 V

Innente	mperatur							A	ußent	empe	ratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	3,11	2,29	0,75	3,11	2,29	0,86	3,11	2,29	0,96	3,11	2,29	1,01	3,10	2,29	1,08	2,93	2,21	1,16
16,0	22	3,75	2,50	0,84	3,58	2,42	0,92	3,42	2,34	1,00	3,36	2,31	1,03	3,26	2,26	1,08	3,10	2,18	1,16
18,0	25	3,91	2,60	0,85	3,75	2,52	0,93	3,58	2,45	1,01	3,52	2,42	1,04	3,42	2,37	1,09	3,26	2,30	1,17
19,0	27	3,99	2,72	0,85	3,83	2,65	0,93	3,66	2,57	1,01	3,60	2,55	1,04	3,50	2,50	1,09	3,34	2,43	1,17
22,0	30	4,23	2,61	0,86	4,07	2,55	0,94	3,90	2,49	1,02	3,84	2,46	1,05	3,74	2,43	1,10	3,58	2,36	1,18
24,0	32	4,39	2,54	0,86	4,23	2,48	0,94	4,07	2,42	1,02	4,00	2,40	1,05	3,90	2,37	1,10	3,74	2,31	1,18

AFR	8,5
BF	0,11

Heizen

50 Hz 220 - 240 V

Innentemperatur				Αι	ıßent	empe	ratur	[°C W	/B]			
EDB	-1	L5	-1	LO	-	5	()		5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,09	0,96	2,51	1,01	2,94	1,06	3,36	1,10	4,66	1,16	5,06	1,20
20,0	1,96	0,98	2,39	1,03	2,81	1,08	3,23	1,13	4,50	1,19	4,91	1,23
22,0	1,91	1,00	2,33	1,04	2,76	1,09	3,18	1,14	4,44	1,20	4,84	1,24
24,0	1,86	1,01	2,28	1,06	2,70	1,10	3,13	1,15	4,38	1,21	4,78	1,25
25,0	1,83	1,01	2,26	1,06	2,68	1,11	3,10	1,16	4,34	1,22	4,75	1,26
27.0	1.78	1.02	2.20	1.07	2.63	1.12	3.05	1.17	4.28	1.23	4.49	1.26

AFR 9,4

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)
TC : Gesamtleistung [kW]

TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors
- 2. In der Abbildung zeigt die Markierung mit $\ \square$ die Nennkapazität und den Nennkoeffizient der
- 3. Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FTXM42M / RXM42M9

Kühlen 220-240V 50Hz

AFR 11,2 BF 0,15

1										3									
1	2		20			25			30			32			35			40	
		TC	SHC	PI															
14	20	3,72	2,76	0,97	3,52	2,64	1,00	3,33	2,60	1,03	3,25	2,56	1,05	3,13	2,50	1,11	2,93	2,41	1,19
16	22	4,50	3,01	0,97	4,30	2,89	1,00	4,11	2,85	1,03	4,03	2,81	1,06	3,91	2,75	1,11	3,71	2,66	1,20
18	25	4,69	3,16	0,98	4,49	3,07	1,01	4,30	2,98	1,04	4,22	2,95	1,07	4,10	2,90	1,12	3,91	2,81	1,20
19	27	4,79	3,32	0,98	4,59	3,23	1,01	4,40	3,15	1,04	4,32	3,11	1,07	4,20	3,06	1,12	4,00	2,98	1,21
22	30	5,08	3,19	0,99	4,88	3,12	1,02	4,69	3,04	1,05	4,61	3,01	1,08	4,49	2,97	1,13	4,29	2,90	1,22
24	32	5,27	3,10	0,99	5,07	3,03	1,02	4,88	2,97	1,05	4,80	2,94	1,08	4,68	2,90	1,13	4,49	2,83	1,22

Heizen 220-240V 50Hz

AFR 12,4

2						4						
	-	15	-1	LO	-	5		0		6	1	.0
	TC	PI										
15	2,57	0,84	3,09	0,89	3,61	0,93	4,12	1,22	5,59	1,28	6,07	1,32
20	2,41	0,87	2,93	0,91	3,45	0,95	3,97	1,25	5,40	1,31	5,89	1,35
22	2,35	0,88	2,87	0,92	3,39	0,96	3,90	1,26	5,33	1,32	5,81	1,36
24	2,29	0,89	2,80	0,93	3,32	0,97	3,84	1,27	5,25	1,33	5,74	1,38
25	2,25	0,89	2,77	0,93	3,29	0,98	3,81	1,27	5,21	1,34	5,65	1,38
27	2,19	0,90	2,71	0,94	3,23	0,99	3,75	1,29	5,14	1,35	5,58	1,35

Hinweise

- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5.0 m Höhenunterschied: 0m
- Die Zellen in Fettdruck geben die Standardbedingungen an. Nominale Betriebsfrequenz [Hz]

Symbole

- TC: Gesamtleistung [kW]
- PI: Leistungsaufnahme [kW]
- SHC: Sensible Wärmeleistung [kW]
- AFR: Luftdurchsatz [m³/min]
- BF: Bypassfaktor
- 1 Innenlufttemperatur [°C DB]
- 2 Innenlufttemperatur [°C WB]
- 3 Außenlufttemperatur [°C DB]
- 4 Außenlufttemperatur [°C WB]

3D104365B

FBA50A / RXM50M9

Kühlen

50 Hz

220 - 240 V

AFR	15,0
BF	0,13

Innente	mperatur							Aı	ußent	empe	ratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,12	3,84	1,08	4,89	3,72	1,18	4,66	3,61	1,29	4,56	3,56	1,33	4,42	3,49	1,39	4,19	3,38	1,50
16,0	22	5,35	3,77	1,09	5,12	3,66	1,19	4,89	3,55	1,29	4,79	3,51	1,34	4,65	3,45	1,40	4,42	3,34	1,50
18,0	25	5,58	3,95	1,09	5,35	3,85	1,20	5,12	3,75	1,30	5,02	3,71	1,34	4,88	3,66	1,40	4,65	3,56	1,51
19,0	27	5,70	4,18	1,10	5,47	4,08	1,20	5,23	3,98	1,30	5,14	3,94	1,35	5,00	3,89	1,41	4,77	3,79	1,51
22,0	30	6,04	4,03	1,11	5,81	3,94	1,21	5,58	3,86	1,31	5,49	3,82	1,35	5,35	3,77	1,42	5,11	3,69	1,52
24,0	32	6,27	3,92	1,11	6,04	3,85	1,22	5,81	3,77	1.32	5.72	3.74	1.36	5.58	3.69	1.42	5.34	3.62	1,53

Heizen

50 Hz

220 - 240 V

AFR 15,0

Innentemperatur				Au	ßent	empe	ratur	[°C W	B]			
EDB	-:	15	-1	LO	-	5	()	(6	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,56	1,16	3,07	1,21	3,59	1,27	4,10	1,33	5,69	1,40	6,19	1,45
20,0	2,40	1,19	2,92	1,25	3,43	1,31	3,95	1,37	5,50	1,44	6,00	1,48
22,0	2,34	1,20	2,85	1,26	3,37	1,32	3,88	1,38	5,42	1,45	5,92	1,50
24,0	2,27	1,21	2,79	1,27	3,30	1,33	3,82	1,39	5,35	1,46	5,84	1,51
25,0	2,24	1,22	2,76	1,28	3,27	1,34	3,79	1,40	5,31	1,47	5,81	1,52
27,0	2,18	1,23	2,69	1,29	3,21	1,35	3,73	1,41	5,23	1,48	5,73	1,53

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)
TC : Gesamtleistung [kW]

TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des
- 2. In der Abbildung zeigt die Markierung mit 🛛 die Nennkapazität und den Nennkoeffizient der
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Entsprechende Kältemittelrohrlänge: 5 m
 - Höhenunterschied: Om Die oben aufgeführten Leistungen gelten für folgende Bedingungen:
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FCAG50A / RXM50M9

Kühlen 50 Hz 220 - 240 V

Innenter	mperatur								Auß	entempe	eratur [°C	DB]							
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	4,03	2,98	0,91	4,03	2,98	1,04	4,03	2,98	1,17	4,03	2,98	1,23	4,03	2,98	1,31	4,03	2,98	1,46
16,0	22	5,13	3,37	1,05	5,12	3,37	1,18	4,89	3,25	1,28	4,79	3,21	1,33	4,65	3,14	1,39	4,42	3,03	1,49
18,0	25	5,58	3,61	1,08	5,35	3,50	1,19	5,12	3,39	1,29	5,02	3,35	1,33	4,88	3,28	1,39	4,65	3,18	1,50
19,0	27	5,70	3,77	1,09	5,47	3,66	1,19	5,23	3,55	1,29	5,14	3,51	1,34	5,00	3,45	1,40	4,77	3,35	1,50
22,0	30	6,04	3,62	1,10	5,81	3,52	1,20	5,58	3,43	1,30	5,49	3,39	1,34	5,35	3,34	1,41	5,11	3,25	1,51
24,0	32	6,27	3,51	1,10	6,04	3,42	1,21	5,81	3,34	1,31	5,72	3,30	1,35	5,58	3,25	1,41	5,34	3,17	1,52

AFR 12,6 Heizen 50 Hz 220 - 240 V

Innentemperatur					Auß	entempe	ratur [°C	WB]				
EDB	-:	15	-1	LO	-	5		0		6	1	10
°C	тс			PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,79	1,30	3,35	1,37	3,91	1,44	4,48	1,50	6,21	1,59	6,75	1,64
20,0	2,62	1,34	3,18	1,41	3,74	1,47	4,31	1,54	6,00	1,62	6,54	1,68
22,0	2,55	1,36	3,11	1,42	3,67	1,49	4,24	1,56	5,92	1,64	6,31	1,69
24,0	2,48	1,37	3,04	1,44	3,61	1,50	4,17	1,57	5,83	1,65	5,86	1,70
25,0	2,45	1,38	3,01	1,44	3,57	1,51	4,13	1,58	5,63	1,66	5,63	1,71
27,0	2,38	1,39	2,94	1,46	3,50	1,53	4,06	1,59	5,18	1,67	5,18	1,73

Symbole

AFR Luftdurchsatz [m³/min]

Bypassfaktor Eingangs-Feuchttemperatur (°C TK) EDB Eingangs-Trockentemperatur (°C FK) Gesamtleistung [kW]
Sensible Wärmeleistung [kW]
Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des
- 2. In der Abbildung zeigt die Markierung mit die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung
- verwendet werden).
 Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben

3D110076

FDXM50F3 / RXM50M9

50 Hz 220 - 240 V Kühlen

Innenter	nperatur								Auß	entempe	eratur [°0	DB]							
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	4,38	3,24	1,15	4,38	3,24	1,30	4,38	3,24	1,46	4,38	3,24	1,53	4,38	3,24	1,62	4,17	3,13	1,75
16,0	22	5,35	3,56	1,27	5,12	3,44	1,40	4,89	3,33	1,52	4,79	3,28	1,57	4,65	3,22	1,64	4,37	3,08	1,75
18,0	25	5,58	3,70	1,28	5,35	3,59	1,40	5,12	3,48	1,52	5,02	3,44	1,57	4,88	3,38	1,65	4,58	3,24	1,75
19,0	27	5,70	3,87	1,28	5,47	3,76	1,41	5,23	3,66	1,53	5,14	3,62	1,58	5,00	3,56	1,65	4,68	3,42	1,75
22,0	30	6,04	3,72	1,30	5,81	3,63	1,42	5,58	3,54	1,54	5,49	3,50	1,59	5,35	3,45	1,66	4,97	3,31	1,75
24,0	32	6,27	3,61	1,30	6,04	3,53	1,42	5,81	3,45	1,55	5,72	3,41	1,60	5,58	3,36	1,67	5,17	3,22	1,75

AFR 12,0

Innentemperatur					Auße	entempe	ratur [°C	WB]				
EDB	-1	15	-1	LO	-	5		0		6	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,70	1,51	3,24	1,58	3,78	1,66	4,33	1,74	6,00	1,83	6,52	1,89
20,0	2,53	1,55	3,07	1,62	3,62	1,70	4,16	1,78	5,80	1,87	6,32	1,93
22,0	2,46	1,56	3,01	1,64	3,55	1,72	4,10	1,80	5,72	1,89	6,24	1,95
24,0	2,40	1,58	2,94	1,66	3,49	1,74	4,03	1,81	5,64	1,90	5,96	1,97
25,0	2,36	1,59	2,91	1,67	3,45	1,74	4,00	1,82	5,60	1,91	5,73	1,97
27,0	2,30	1,61	2,84	1,68	3,39	1,76	3,93	1,84	5,27	1,93	5,27	1,99

AFR Luftdurchsatz [m³/min]

Bypassfaktor BF

EWB Eingangs-Feuchttemperatur (°C TK) Eingangs-Trockentemperatur (°C FK) EDB

Gesamtleistung [kW] TC SHC Sensible Wärmeleistung [kW] Leistungsaufnahme [kW]

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des
- Innenventilators enthalten.

 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FFA50A / RXM50M9

Kühlen 50 Hz 220 - 240 V BF 0,16

Innente	mperatur								Außen	tempe	eratur	C DR							
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	4,14	3,06	1,03	4,14	3,06	1,17	4,14	3,06	1,32	4,14	3,06	1,38	4,14	3,06	1,47	4,14	3,06	1,63
16,0	22	5,26	3,46	1,18	5,12	3,39	1,30	4,89	3,27	1,42	4,79	3,23	1,46	4,65	3,16	1,53	4,42	3,05	1,65
18,0	25	5,58	3,64	1,20	5,35	3,53	1,31	5,12	3,42	1,43	5,02	3,37	1,47	4,88	3,31	1,54	4,65	3,21	1,65
19,0	27	5,70	3,80	1,20	5,47	3,69	1,31	5,23	3,59	1,43	5,14	3,54	1,47	5,00	3,48	1,54	4,77	3,38	1,66
22,0	30	6,04	3,65	1,21	5,81	3,55	1,33	5,58	3,46	1,44	5,49	3,42	1,48	5,35	3,37	1,55	5,11	3,28	1,67
24,0	32	6,27	3,54	1,22	6,04	3,45	1,33	5,81	3,37	1,45	5,72	3,34	1,49	5,58	3,29	1,56	5,34	3,20	1,67

Heizen 50 Hz 220 - 240 V AFR 12,0

Innentemperatur					Außen	tempe	ratur [°C WB]			
EDB	-:	15	-1	LO	-	5	()		6	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,70	1,34	3,24	1,41	3,78	1,47	4,33	1,54	6,00	1,62	6,52	1,68
20,0	2,53	1,37	3,07	1,44	3,62	1,51	4,16	1,58	5,80	1,66	6,32	1,72
22,0	2,46	1,39	3,01	1,46	3,55	1,53	4,10	1,59	5,72	1,68	6,21	1,73
24,0	2,40	1,40	2,94	1,47	3,49	1,54	4,03	1,61	5,64	1,69	5,77	1,75
25,0	2,36	1,41	2,91	1,48	3,45	1,55	4,00	1,62	5,55	1,70	5,55	1,75
27,0	2,30	1,43	2,84	1,50	3,39	1,56	3,93	1,63	5,10	1,71	5,10	1,77

Symbole

AFR : Luftdurchsatz [m³/min]
BF : Bypassfaktor

BF : Bypassfaktor
EWB : Eingangs-Feuchttemperatur (°C TK)

EDB : Eingangs-Trockentemperatur (°C FK)

TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🛛 die Nennkapazität und den Nennkoeffizient der
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110085

FHA50A / RXM50M9

Kühlen 50 Hz 220 - 240 V

Innenter	mperatur								Auße	ntempe	ratur ['	C DB]							
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,05	3,73	1,18	4,89	3,65	1,31	4,66	3,53	1,43	4,56	3,49	1,47	4,42	3,42	1,54	4,19	3,30	1,66
16,0	22	5,35	3,70	1,20	5,12	3,59	1,32	4,89	3,48	1,43	4,79	3,44	1,48	4,65	3,37	1,55	4,42	3,27	1,66
18,0	25	5,58	3,87	1,21	5,35	3,77	1,32	5,12	3,66	1,44	5,02	3,62	1,49	4,88	3,56	1,55	4,65	3,47	1,67
19,0	27	5,70	4,08	1,21	5,47	3,98	1,33	5,23	3,88	1,44	5,14	3,84	1,49	5,00	3,78	1,56	4,77	3,69	1,67
22,0	30	6,04	3,93	1,22	5,81	3,84	1,34	5,58	3,75	1,45	5,49	3,72	1,50	5,35	3,67	1,57	5,11	3,58	1,68
24,0	32	6,27	3,82	1,23	6,04	3,74	1,34	5,81	3,66	1,46	5,72	3,63	1,51	5,58	3,59	1,58	5,34	3,51	1,69

AFR 15,0 BF 0,18

Heizen	50 Hz	220 - 240 V

Innentemperatur					Außei	ntempe	ratur [°	C WB]				
EDB	-1	15	-1	LO	-	5	()		5	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,79	1,44	3,35	1,51	3,91	1,59	4,48	1,66	6,21	1,75	6,75	1,81
20,0	2,62	1,48	3,18	1,56	3,74	1,63	4,31	1,70	6,00	1,79	6,54	1,85
22,0	2,55	1,50	3,11	1,57	3,67	1,64	4,24	1,72	5,92	1,81	6,46	1,87
24,0	2,48	1,51	3,04	1,59	3,61	1,66	4,17	1,73	5,83	1,82	6,38	1,88
25,0	2,45	1,52	3,01	1,60	3,57	1,67	4,13	1,74	5,79	1,83	6,33	1,89
27,0	2,38	1,54	2,94	1,61	3,50	1,69	4,06	1,76	5,71	1,85	6,25	1,91

AFR 15,0

...

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)

TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des
- In der Abbildung zeigt die Markierung mit

 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FNA50A / RXM50M9

Kühlen 50 Hz 220 - 240 V

Innenter	nperatur							P	ußen	tempe	eratur	[°C DE	3]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,12	3,94	1,13	4,89	3,83	1,24	4,66	3,71	1,35	4,56	3,67	1,40	4,42	3,60	1,46	4,19	3,49	1,57
16,0	22	5,35	3,87	1,14	5,12	3,77	1,25	4,89	3,66	1,36	4,79	3,62	1,40	4,65	3,56	1,47	4,42	3,45	1,58
18,0	25	5,58	4,08	1,15	5,35	3,98	1,26	5,12	3,88	1,37	5,02	3,84	1,41	4,88	3,78	1,48	4,65	3,69	1,59
19,0	27	5,70	4,32	1,15	5,47	4,22	1,26	5,23	4,13	1,37	5,14	4,09	1,41	5,00	4,04	1,48	4,77	3,94	1,59
22,0	30	6,04	4,17	1,16	5,81	4,09	1,27	5,58	4,00	1,38	5,49	3,97	1,42	5,35	3,92	1,49	5,11	3,84	1,60
24,0	32	6,27	4,07	1,17	6,04	3,99	1,28	5,81	3,92	1,39	5,72	3,89	1,43	5,58	3,84	1,50	5,34	3,77	1,60

AFR 16,0 BF 0,12

Heizen 50 Hz 220 - 240 V

Innentemperatur				Α	ußent	empe	ratur	[°C WI	B]			
EDB	-:	L5	-1	10	-	5	0)	•	5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,70	1,40	3,24	1,47	3,78	1,54	4,33	1,61	6,00	1,70	6,52	1,75
20,0	2,53	1,44	3,07	1,51	3,62	1,58	4,16	1,65	5,80	1,74	6,32	1,79
22,0	2,46	1,45	3,01	1,52	3,55	1,59	4,10	1,67	5,72	1,75	6,24	1,81
24,0	2,40	1,47	2,94	1,54	3,49	1,61	4,03	1,68	5,64	1,77	6,16	1,83
25,0	2,36	1,48	2,91	1,55	3,45	1,62	4,00	1,69	5,60	1,78	6,12	1,83
27,0	2,30	1,49	2,84	1,56	3,39	1,63	3,93	1,71	5,52	1,79	6,04	1,85

AFR 16,0

Symbole

AFR Luftdurchsatz [m³/min] BF Bypassfaktor

EWB Eingangs-Feuchttemperatur (°C TK)
EDB Eingangs-Trockentemperatur (°C FK)
TC Gesamtleistung [kW]
SHC Sensible Wärmeleistung [kW]
PI Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110091

RXM50M9

Kühlen 50 Hz 220 - 240 V

Innenter	nperatur							A	ußent	empe	ratur	[°C D	В]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	3,82	2,82	0,98	3,82	2,82	1,12	3,82	2,82	1,27	3,82	2,82	1,33	3,82	2,82	1,42	3,82	2,82	1,57
16,0	22	4,86	3,20	1,12	4,86	3,20	1,27	4,86	3,20	1,42	4,79	3,16	1,47	4,65	3,09	1,54	4,42	2,98	1,65
18,0	25	5,58	3,56	1,20	5,35	3,45	1,32	5,12	3,34	1,43	5,02	3,29	1,48	4,88	3,23	1,54	4,65	3,12	1,66
19,0	27	5,70	3,71	1,20	5,47	3,60	1,32	5,23	3,49	1,43	5,14	3,45	1,48	5,00	3,39	1,55	4,77	3,28	1,66
22,0	30	6,04	3,56	1,21	5,81	3,46	1,33	5,58	3,37	1,44	5,49	3,33	1,49	5,35	3,27	1,56	5,11	3,18	1,67
24,0	32	6,27	3,45	1,22	6,04	3,36	1,34	5,81	3,27	1,45	5,72	3,24	1,50	5,58	3,19	1,57	5,34	3,10	1,68

AFR	10,7
BF	0,13

Heizen

50 Hz

220 - 240 V

Innentemperatur				Aι	ıßent	empe	ratur	[°C W	/B]			
EDB	-1	L 5	-1	LO	-	5	-)	(5	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	2,70	1,29	3,24	1,35	3,78	1,42	4,33	1,48	6,00	1,56	6,52	1,61
20,0	2,53	1,32	3,07	1,39	3,62	1,45	4,16	1,52	5,80	1,60	6,32	1,65
22,0	2,46	1,34	3,01	1,40	3,55	1,47	4,10	1,53	5,72	1,61	6,24	1,66
24,0	2,40	1,35	2,94	1,42	3,49	1,48	4,03	1,55	5,64	1,63	5,79	1,68
25,0	2,36	1,36	2,91	1,42	3,45	1,49	4,00	1,55	5,57	1,63	5,57	1,69
27,0	2,30	1,37	2,84	1,44	3,39	1,50	3,93	1,57	5,13	1,65	5,13	1,70

AFR 11,8

Symbole

AFR : Luftdurchsatz [m³/min] BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)

TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme
- 2. In der Abbildung zeigt die Markierung mit

 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende K\u00e4ltemittelrohrl\u00e4nge: 5 m H\u00f6henunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FBA60A / RXM60M9

Kühlen 50 Hz 220 - 240 V AFR 18,0 BF 0,15

Innenter	nperatur								Auße	ntempe	eratur ['	C DB]							
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,84	4,42	1,26	5,57	4,28	1,38	5,31	4,16	1,50	5,20	4,10	1,55	5,04	4,03	1,62	4,78	3,90	1,74
16,0	22	6,10	4,34	1,26	5,84	4,22	1,38	5,57	4,09	1,51	5,47	4,05	1,55	5,31	3,97	1,63	5,04	3,86	1,75
18,0	25	6,36	4,56	1,27	6,10	4,44	1,39	5,83	4,33	1,51	5,73	4,29	1,56	5,57	4,22	1,63	5,30	4,11	1,76
19,0	27	6,50	4,82	1,27	6,23	4,71	1,40	5,97	4,60	1,52	5,86	4,56	1,57	5,70	4,49	1,64	5,43	4,39	1,76
22,0	30	6,89	4,65	1,29	6,62	4,55	1,41	6,36	4,46	1,53	6,25	4,42	1,58	6,09	4,36	1,65	5,83	4,27	1,77
24,0	32	7,15	4,53	1,29	6,89	4,44	1,41	6,62	4,36	1,54	6,52	4,32	1,58	6,36	4,27	1,66	6,09	4,18	1,78

Heizen 50 Hz 220 - 240 V AFR 18,0

Innentemperatur					Auße	ntempe	ratur [°	C WB]				
EDB	-:	15	-:	10	-	5	(0		6	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	3,39	1,52	4,08	1,60	4,76	1,67	5,44	1,75	7,24	1,84	7,87	1,91
20,0	3,18	1,56	3,87	1,64	4,55	1,72	5,23	1,79	7,00	1,89	7,63	1,95
22,0	3,10	1,58	3,78	1,66	4,47	1,73	5,15	1,81	6,90	1,90	7,54	1,97
24,0	3,02	1,59	3,70	1,67	4,38	1,75	5,07	1,83	6,81	1,92	7,44	1,98
25,0	2,97	1,60	3,66	1,68	4,34	1,76	5,03	1,84	6,76	1,93	7,39	1,99
27,0	2,89	1,62	3,57	1,70	4,26	1,78	4,94	1,85	6,66	1,95	7,29	2,01

Symbole

AFR : Luftdurchsatz [m³/min]
BF : Bypassfaktor

EWB : Eingangs-Feuchttemperatur (°C TK)
EDB : Eingangs-Trockentemperatur (°C FK)

EDB : Eingangs-Trockentemperatur (°C
TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- 1 Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2 In der Abbildung zeigt die Markierung mit

 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- 3 Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4 Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5 Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende K\u00e4ltemittelrohrl\u00e4nge: 5 m H\u00f6henunterschied: 0m
- 6 Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110074

FCAG60A / RXM60M9

Kühlen 50 Hz 220 - 240 V AFR 13,6 BF 0,2

Innentem	peratur								Außer	ntempe	ratur (°C DB]							
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	4,47	3,30	1,12	4,47	3,30	1,28	4,47	3,30	1,44	4,47	3,30	1,51	4,47	3,30	1,61	4,47	3,30	1,78
16,0	22	5,68	3,73	1,27	5,68	3,73	1,43	5,57	3,68	1,58	5,47	3,63	1,63	5,31	3,55	1,71	5,04	3,42	1,84
18,0	25	6,36	4,09	1,34	6,10	3,96	1,16	5,83	3,83	1,59	5,73	3,78	1,64	5,57	3,71	1,72	5,30	3,59	1,85
19,0	27	6,50	4,26	1,34	6,23	4,14	1,47	5,97	4,01	1,59	5,86	3,97	1,65	5,70	3,89	1,72	5,43	3,78	1,85
22,0	30	6,89	4,09	1,35	6,62	3,98	1,48	6,36	3,87	1,61	6,25	3,83	1,66	6,09	3,76	1,73	5,83	3,66	1,86
24,0	32	7,15	3,96	1,36	6,89	3,86	1,49	6,62	3,76	1,61	6,52	3,73	1,66	6,36	3,67	1,74	6,09	3,57	1,87

Heizen	50 Hz	!	2.	20 - 24	40 V		A	rn.	13	,0	l	
Innentemperatur					Außen	tempe	ratur [°C WB]				
EDB		15	-1	10		5		0		6	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	3,39	1,67	4,08	1,75	4,76	1,84	5,44	1,92	7,24	2,02	7,87	2,09
20,0	3,18	1,71	3,87	1,80	4,55	1,88	5,23	1,97	7,00	2,07	7,63	2,14
22,0	3,10	1,73	3,78	1,82	4,47	1,90	5,15	1,99	6,90	2,09	7,54	2,16
24,0	3,02	1,75	3,70	1,84	4,38	1,92	5,07	2,01	6,81	2,11	7,38	2,18
25,0	2,97	1,76	3,66	1,84	4,34	1,93	5,03	2,02	6,76	2,12	7,13	2,19
27,0	2,89	1,78	3,57	1,86	4,26	1,95	4,94	2,03	6,64	2,14	6,64	2,20

Symbole

AFR : Luftdurchsatz [m³/min]
BF : Bypassfaktor

BF : Bypassfaktor
EWB : Eingangs-Feuchttemperatur (°C TK)

EDB : Eingangs-Trockentemperatur (°C FK)
TC : Gesamtleistung [kW]
SHC : Sensible Wärmeleistung [kW]
PI : Leistungsaufnahme [kW]

Hinweise

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- 3 Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5 Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FDXM60F3 / RXM60M9

Kühlen 50 Hz 220 - 240 V 16,0 0,12

Innente	emperatur								Außente	mperatu	ır [°C DB]							
EWB	EDB		20			25			30			32			35			40	
°c	°C	TC	SHC	PI	тс	SHC	PI	TC	SHC	PI	TC	SHC	PI	тс	SHC	PI	TC	SHC	PI
14,0	20	5,78	4,27	1,53	5,78	4,27	1,72	5,59	4,17	1,89	5,48	4,11	1,95	5,31	4,03	2,04	4,37	3,58	2,01
16,0	22	6,42	4,38	1,59	6,14	4,24	1,74	5,86	4,11	1,90	5,75	4,06	1,96	5,59	3,98	2,05	4,59	3,53	2,01
18,0	25	6,70	4,57	1,60	6,42	4,44	1,75	6,14	4,32	1,91	6,03	4,27	1,97	5,86	4,20	2,06	4,81	3,75	2,01
19,0	27	6,84	4,80	1,60	6,56	4,68	1,76	6,28	4,56	1,91	6,17	4,51	1,97	6,00	4,44	2,06	4,92	4,00	2,01
22,0	30	7,25	4,62	1,62	6,97	4,52	1,77	6,69	4,41	1,92	6,58	4,37	1,98	6,41	4,31	2,08	5,24	3,89	2,01
24,0	32	7,53	4,50	1,63	7,25	4,40	1,78	6,97	4,30	1,93	6,86	4,26	1,99	6,69	4,21	2,08	5,46	3,80	2,01

Heizen 50 Hz 220 - 240 V AFR 16,0

Innentemperatur					Auß	entempe	ratur [°C	WB]				
EDB	-:	15	-1	LO	-	-5	-	0		6	1	.0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	3,39	1,75	4,08	1,84	4,76	1,93	5,44	2,02	7,24	2,13	7,87	2,20
20,0	3,18	1,80	3,87	1,89	4,55	1,98	5,23	2,07	7,00	2,18	7,63	2,25
22,0	3,10	1,82	3,78	1,91	4,47	2,00	5,15	2,09	6,90	2,20	7,54	2,27
24,0	3,02	1,84	3,70	1,93	4,38	2,02	5,07	2,11	6,81	2,22	7,44	2,29
25,0	2,97	1,85	3,66	1,94	4,34	2,03	5,03	2,12	6,76	2,23	7,39	2,30
27,0	2,89	1,87	3,57	1,96	4,26	2,05	4,94	2,14	6,66	2,25	7,29	2,32

AFR : Luftdurchsatz [m³/min]

Bypassfaktor

: Eingangs-Feuchttemperatur (°C TK) EWB FDB : Eingangs-Trockentemperatur (°C FK)

TC : Gesamtleistung [kW] SHC : Sensible Wärmeleistung [kW] : Leistungsaufnahme [kW]

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der
- Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des
- Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110081

FFA60A / RXM60M9

Kühlen	50 Hz	220 - 240 V	AFR	14,5
	302	220 2.01	BF	0.11

Innenter	nperatur							Α	ußent	empe	ratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,30	3,91	1,36	5,30	3,91	1,53	5,30	3,91	1,71	5,20	3,86	1,77	5,04	3,78	1,85	4,78	3,65	1,99
16,0	22	6,10	4,12	1,44	5,84	3,99	1,58	5,57	3,86	1,72	5,47	3,81	1,77	5,31	3,73	1,86	5,04	3,61	1,99
18,0	25	6,36	4,29	1,45	6,10	4,17	1,59	5,83	4,05	1,73	5,73	4,00	1,78	5,57	3,93	1,86	5,30	3,82	2,00
19,0	27	6,50	4,50	1,45	6,23	4,38	1,59	5,97	4,27	1,73	5,86	4,22	1,79	5,70	4,16	1,87	5,43	4,05	2,01
22,0	30	6,89	4,33	1,47	6,62	4,23	1,61	6,36	4,13	1,74	6,25	4,09	1,80	6,09	4,03	1,88	5,78	3,91	2,01
24.0	32	7.15	4.21	1.48	6.89	4.12	1.61	6.62	4.02	1.75	6.52	3.99	1.81	6.36	3.93	1.89	6.01	3.82	2.01

AFR 14,5 Heizen 50 Hz 220 - 240 V

Innentemperatur				Αı	ußent	empe	ratur	[°C W	В]			
EDB	-1	L5	-1	LO	-	5)	(5	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	3,39	1,65	4,08	1,74	4,76	1,82	5,44	1,91	7,24	2,01	7,87	2,07
20,0	3,18	1,70	3,87	1,78	4,55	1,87	5,23	1,95	7,00	2,05	7,63	2,12
22,0	3,10	1,72	3,78	1,80	4,47	1,89	5,15	1,97	6,90	2,07	7,54	2,14
24,0	3,02	1,73	3,70	1,82	4,38	1,90	5,07	1,99	6,81	2,09	7,44	2,16
25,0	2,97	1,74	3,66	1,83	4,34	1,91	5,03	2,00	6,76	2,10	7,39	2,17
27,0	2,89	1,76	3,57	1,85	4,26	1,93	4,94	2,02	6,66	2,12	7,29	2,19

Symbole

AFR BF EWB EDB TC SHC PI Luftdurchsatz [m³/min] Bypassfaktor Eingangs-Feuchttemperatur (°C TK) Eingangs-Trockentemperatur (°C FK) Gesamtleistung [kW] Sensible Wärmeleistung [kW] Leistungsaufnahme [kW]

- 1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- 3. Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

4 - 1 Kühl-/Heizleistungstabellen

FHA60A / RXM60M9

Kühlen 50 Hz 220 - 240 V

Innente	mperatur							Α	ußent	empe	eratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,84	4,45	1,33	5,57	4,32	1,46	5,31	4,19	1,59	5,20	4,13	1,64	5,04	4,06	1,71	4,78	3,93	1,84
16,0	22	6,10	4,37	1,34	5,84	4,25	1,47	5,57	4,13	1,59	5,47	4,08	1,64	5,31	4,01	1,72	5,04	3,89	1,85
18,0	25	6,36	4,59	1,34	6,10	4,48	1,47	5,83	4,37	1,60	5,73	4,32	1,65	5,57	4,26	1,73	5,30	4,15	1,86
19,0	27	6,50	4,86	1,35	6,23	4,75	1,48	5,97	4,64	1,60	5,86	4,60	1,66	5,70	4,54	1,73	5,43	4,43	1,86
22,0	30	6,89	4,69	1,36	6,62	4,60	1,49	6,36	4,50	1,62	6,25	4,46	1,67	6,09	4,41	1,74	5,83	4,31	1,87
24,0	32	7,15	4,57	1,37	6,89	4,49	1,50	6,62	4,40	1,62	6,52	4,36	1,68	6,36	4,31	1,75	6,09	4,23	1,88

Heizen

50 Hz 220 - 240 V

Innentemperatur				A	ußent	empe	ratur	[°C W	В]			
EDB	-1	L5	-1	LO	-	5)		5	1	0.
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	3,49	1,74	4,19	1,83	4,90	1,92	5,60	2,01	7,45	2,12	8,10	2,19
20,0	3,27	1,79	3,98	1,88	4,68	1,97	5,38	2,06	7,20	2,17	7,85	2,24
22,0	3,19	1,81	3,89	1,90	4,59	1,99	5,30	2,08	7,10	2,19	7,75	2,26
24,0	3,10	1,83	3,81	1,92	4,51	2,01	5,21	2,10	7,00	2,21	7,65	2,28
25,0	3,06	1,84	3,76	1,93	4,47	2,02	5,17	2,11	6,95	2,22	7,60	2,29
27.0	2,97	1,86	3,68	1,95	4,38	2,04	5,08	2,13	6,85	2,24	7,50	2,31

Symbole

AFR : Luftdurchsatz [m³/min]

BF : Bypassfaktor

FWR : Eingangs-Feuchttemperatur (°C TK) EDB : Eingangs-Trockentemperatur (°C FK)

: Gesamtleistung [kW] SHC : Sensible Wärmeleistung [kW] : Leistungsaufnahme [kW]

Hinweise

1. Die angegebenen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.

AFR 19,5

- 2. On the figure the $\;\;\square\;\;$ mark shows the rated capacity and rated coefficient of the power input.
- 3. Gesamtkapazität, Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.

 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen:
- Corresponding refrigerant piping length: 5 m Level difference: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

3D110088

FNA60A / RXM60M9

Kühlen 50 Hz 220 - 240 V

Innente	mperatur							Αι	ıßent	empe	eratur	[°C D	B]						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,78	4,27	1,66	5,78	4,27	1,86	5,59	4,17	2,03	5,48	4,11	2,10	5,31	4,03	2,20	3,82	3,32	2,01
16,0	22	6,42	4,38	1,71	6,14	4,24	1,88	5,86	4,11	2,04	5,75	4,06	2,11	5,59	3,98	2,21	4,02	3,28	2,01
18,0	25	6,70	4,57	1,72	6,42	4,44	1,89	6,14	4,32	2,05	6,03	4,27	2,12	5,86	4,20	2,22	4,22	3,51	2,01
19,0	27	6,84	4,80	1,73	6,56	4,68	1,89	6,28	4,56	2,06	6,17	4,51	2,12	6,00	4,44	2,22	4,32	3,77	2,01
22,0	30	7,25	4,62	1,74	6,97	4,52	1,91	6,69	4,41	2,07	6,58	4,37	2,14	6,41	4,31	2,24	4,62	3,67	2,01
24,0	32	7,53	4,50	1,75	7,25	4,40	1,92	6,97	4,30	2,08	6,86	4,26	2,15	6,69	4,21	2,25	4,82	3,60	2,01

16,0					

Heizen

50 Hz

220 - 240 V

Innentemperatur	Außentemperatur [°C WB]											
EDB	-15		-10		-5		0		6		10	
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15,0	3,39	1,81	4,08	1,90	4,76	2,00	5,44	2,09	7,24	2,20	7,87	2,27
20,0	3,18	1,86	3,87	1,95	4,55	2,05	5,23	2,14	7,00	2,25	7,63	2,32
22,0	3,10	1,88	3,78	1,97	4,47	2,07	5,15	2,16	6,90	2,27	7,54	2,35
24,0	3,02	1,90	3,70	1,99	4,38	2,09	5,07	2,18	6,81	2,29	7,44	2,37
25,0	2,97	1,91	3,66	2,00	4,34	2,10	5,03	2,19	6,76	2,30	7,39	2,38
27,0	2,89	1,93	3,57	2,03	4,26	2,12	4,94	2,21	6,66	2,32	7,29	2,40

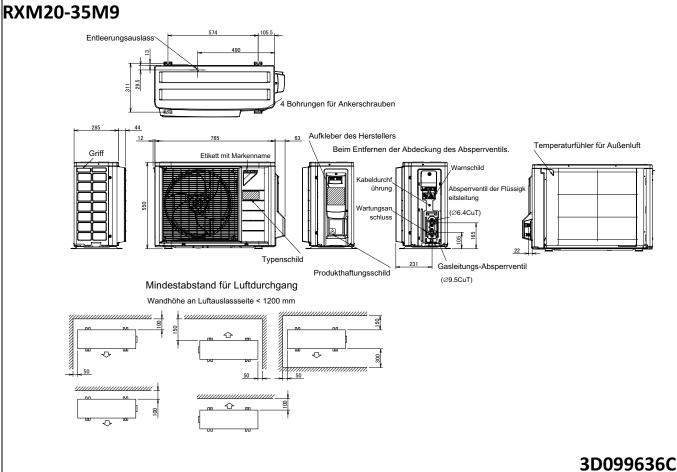
AFR 16,0

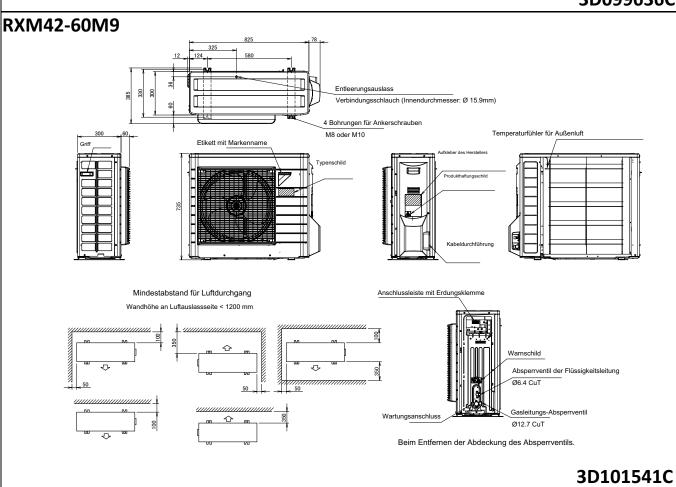
Symbole

Luftdurchsatz [m³/min] AFR

Bypassfaktor

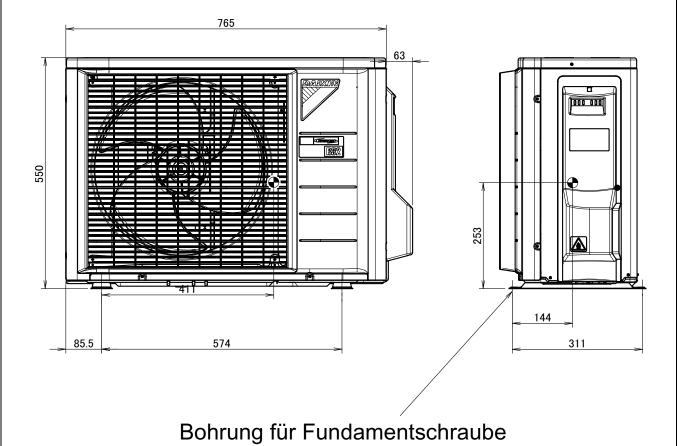
EWB Eingangs-Feuchttemperatur (°C TK) Eingangs-Trockentemperatur (°C FK)
Gesamtleistung [kW]
Sensible Wärmeleistung [kW]
Leistungsaufnahme EDB TC


SHC PI


Hinweise

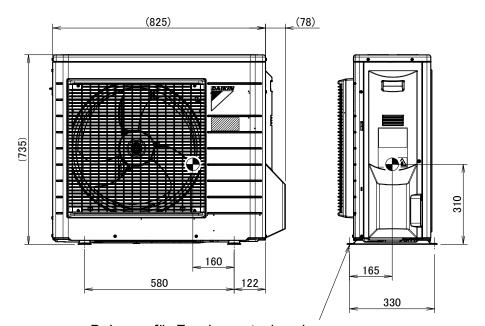
- enen Bemessungswerte sind Netto-Kapazitäten, die einen Abzug für die Wärme des Motors des Innenventilators enthalten.
- 2. In der Abbildung zeigt die Markierung mit 🗆 die Nennkapazität und den Nennkoeffizient der Leistungsaufnahme.
- 3. Gesamtkapazität. Eingangsleistung und sensible Wärmekapazität müssen mithilfe von Interpolation und der Zahlen in der Tabelle berechnet werden (Zahlen außerhalb des Tabellenbereichs dürfen nicht für die Berechnung verwendet werden).
- 4. Falls die sensible Wärmekapazität nicht in der Tabelle angegeben ist, berechnen Sie diese bitte anhand einer Annäherung zwischen zwei Werten im direkten Verhältnis.
- 5. Die oben aufgeführten Leistungen gelten für folgende Bedingungen: Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m
- 6. Luftdurchsatz und Bypassfaktor sind in der Tabelle angegeben.

Abmessungszeichnungen Abmessungszeichnungen


5 - 1

6 - 1

RXM20-35M9

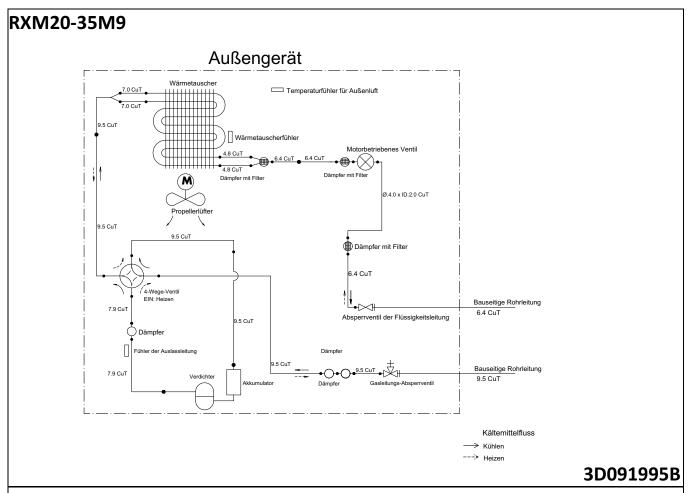


4D099652B

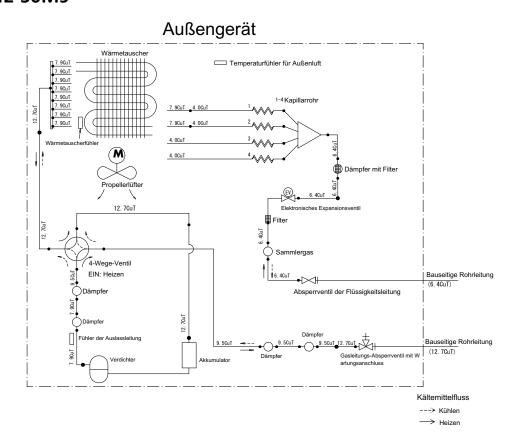
Masseschwerpunkt Massenschwerpunkt 6

6 - 1

RXM42-60M9

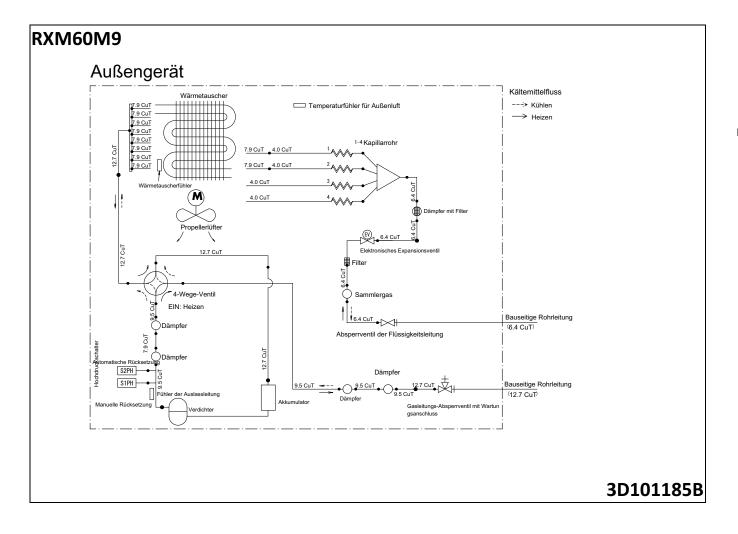


Bohrung für Fundamentschraube

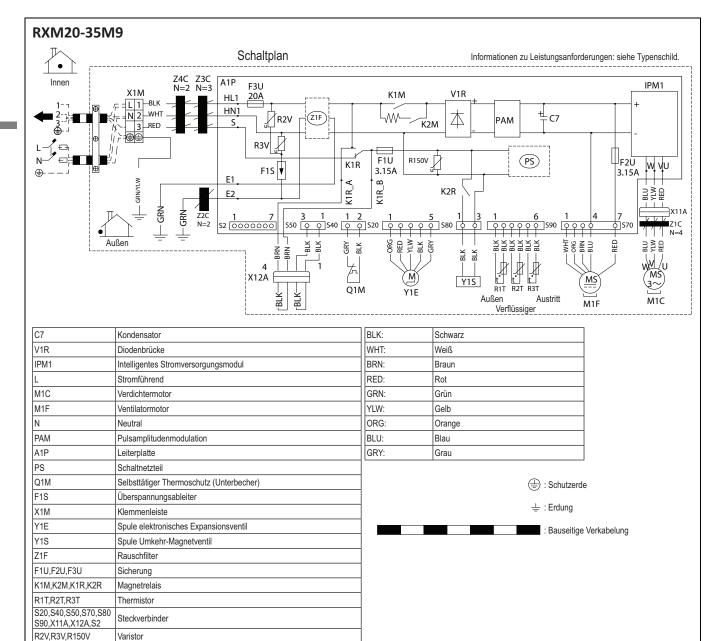

4D102113A

7 Kältemittelkreislauf

7 - 1 Kältemittelkreisläufe


RXM42-50M9

3D092010D


7 Kältemittelkreislauf

7 - 1 Kältemittelkreisläufe

8 Elektroschaltplan

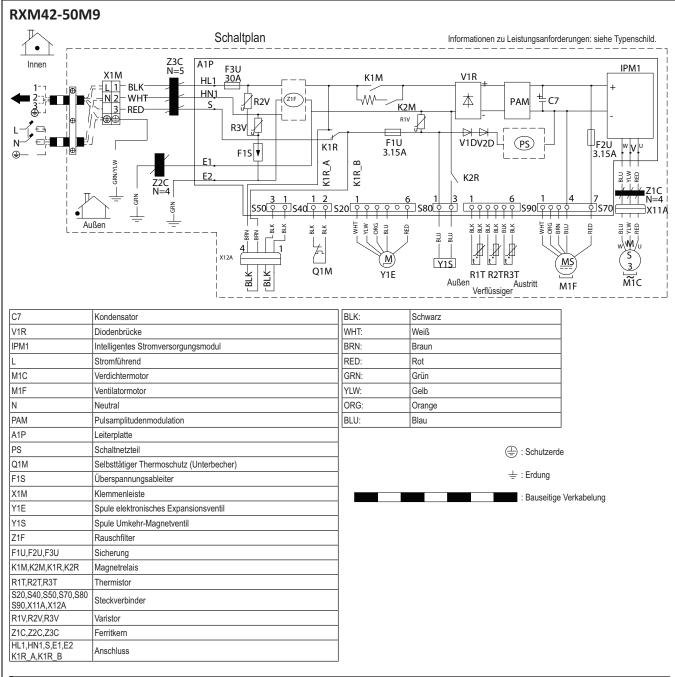
8 - 1 Elektroschaltpläne – Eine Phase

HINWEISE

Z1C,Z2C,Z3C,Z4C

HL1,HN1,S,E1,E2

K1R_A,K1R_B

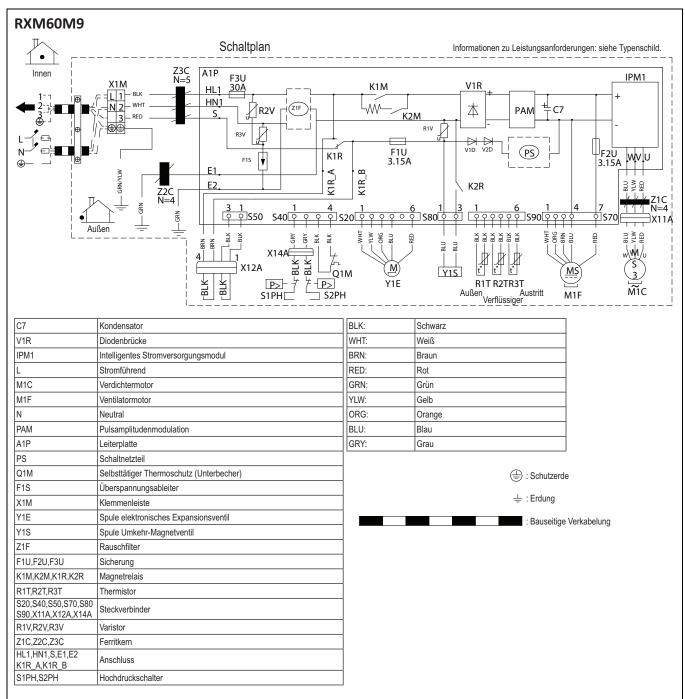

- 1. Maße: 140 x 80
- Siehe Bestelldatenblatt AS303002, sofern nicht anders angegeben.

Ferritkern

Anschluss

8 Elektroschaltplan

8 - 1 Elektroschaltpläne – Eine Phase

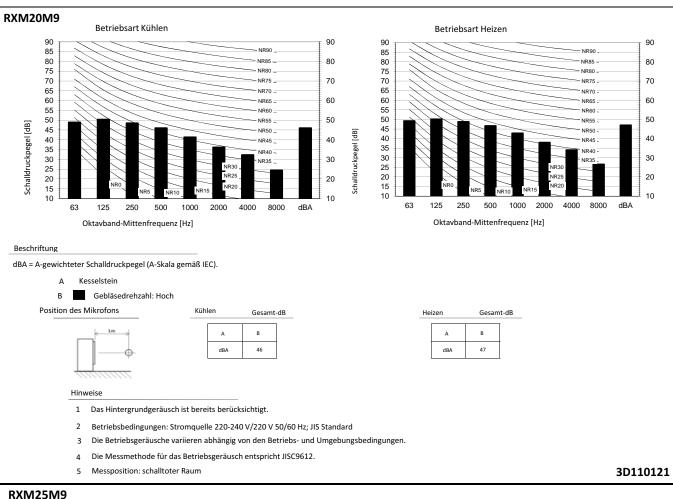

HINWEISE

- 1. Maße: Länge 105 x Breite 185.
- Siehe Bestelldatenblatt AS303002, sofern nicht anders angegeben.

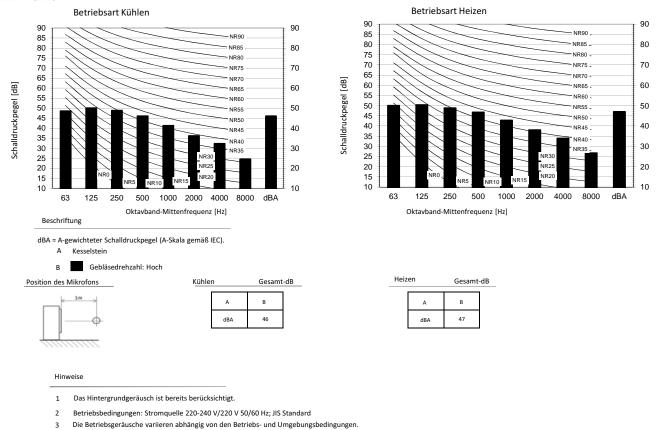
3D108900A

8 Elektroschaltplan

8 - 1 Elektroschaltpläne – Eine Phase

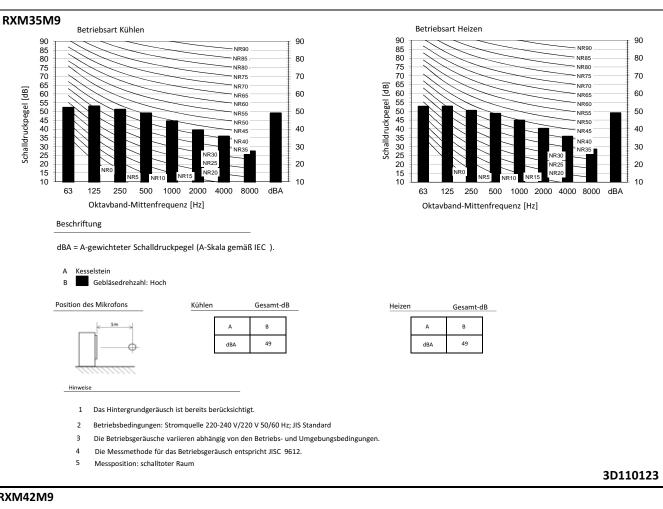


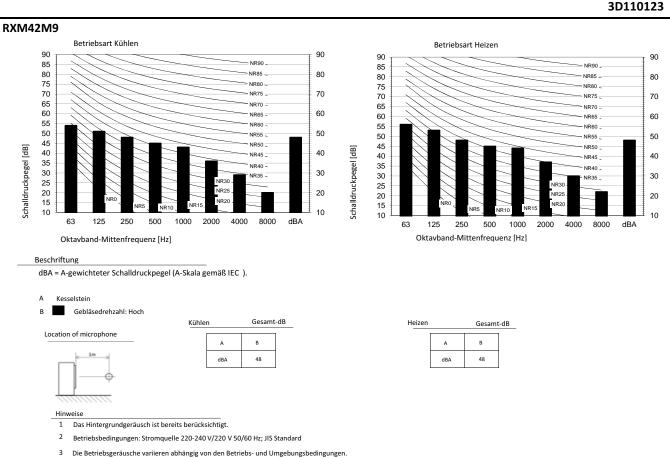
HINWEISE


- 1. Maße: Länge 105 x Breite 185.
- 2. Siehe Bestelldatenblatt AS303002, sofern nicht anders angegeben.

Schalldaten

Schalldruckspektren

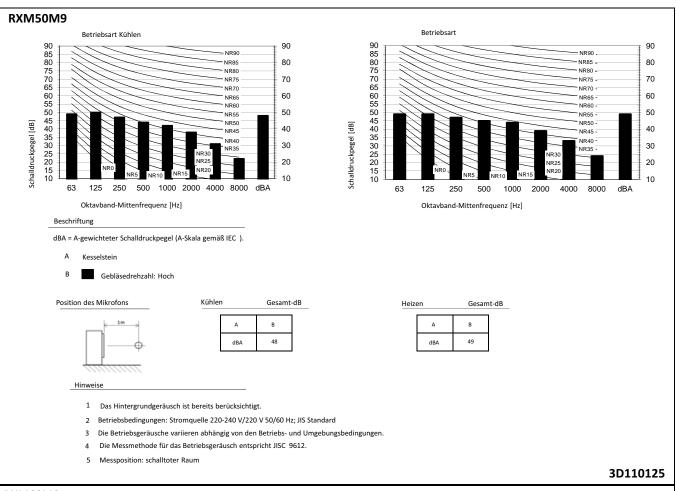


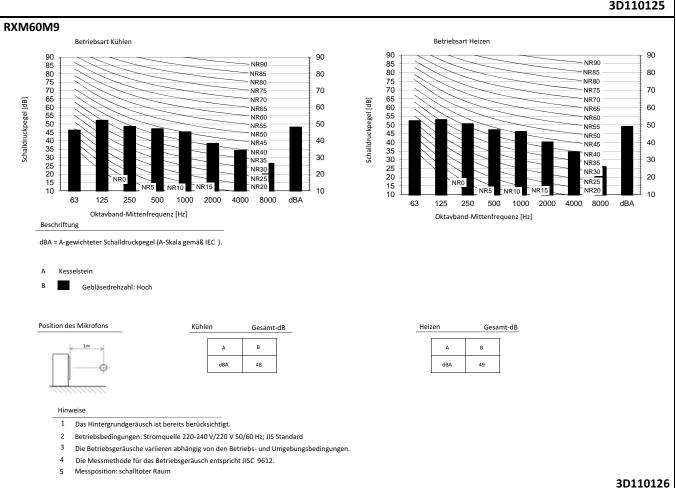

Die Messmethode für das Betriebsgeräusch entspricht JISC9612.

Messposition: schalltoter Raum

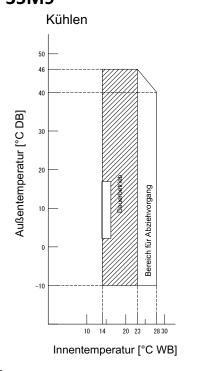
9 Schalldaten

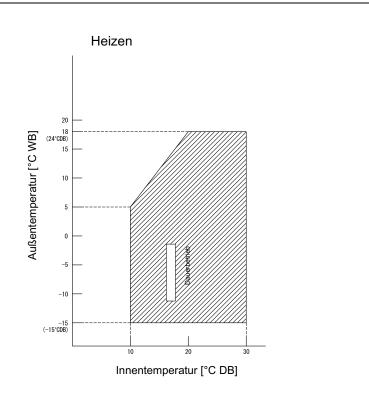
9 - 1 Schalldruckspektren


3D110124

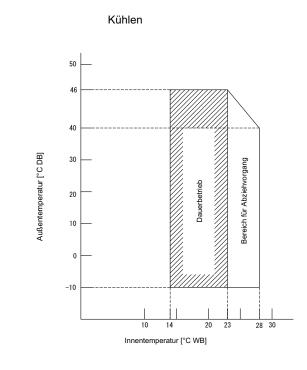

Die Messmethode für das Betriebsgeräusch entspricht JISC 9612.

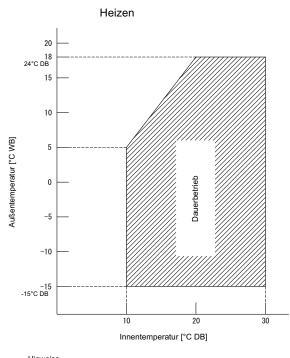
Messposition: schalltoter Raum


9 Schalldaten


9 - 1 Schalldruckspektren

RXM20-35M9

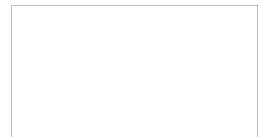




1. Die graph basiert auf den folgenden Bedingungen. Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m Luftstromrate Hoch

3D092127E

RXM42-60M9


1. Die graphs basiert auf den folgenden Bedingungen. Entsprechende Kältemittelrohrlänge: 5 m Höhenunterschied: 0m

Luftstromrate

3D100846D

Daikin Europe N.V. Naamloze Vennootschap - Zandvoordestraat 300, B-8400 Oostende - Belgium - www.daikin.eu - BE 0412 120 336 - RPR Oostende

DDE18

Daikin Europe N.V. nimmt am Eurovent Certification Programme für Flüssigkeitskühlaggregate, Hydronic-Wärmepumpen, Ventilator-Konvektoren und Systeme mit variablem Kältemitteldurchfluss teil. Prüfen Sie die weitergehende Gültigkeit des Zertifikats online unter: www.eurovent-certification.com

Die vorliegende Broschüre wurde ausschließlich zu Informationszwecken erarbeitet und begründet kein für Daikin Europe N.V. verbindliches Angebot. Daikin Europe N.V. hat den Inhalt dieser Broschüre nach bestem Wissen und Gewissen zusammengestellt. Es wird keine ausdrückliche oder implizierte Garantie bezüglich der Vollständigkeit, der Richtigkeit, der Zuverlässigkeit und der Verwendbarkeit für einen bestimmten Zweck des hier angegebenen Inhalts und der hier angegebenen Produkte und Dienstleistungen gegeben. Technische Daten können sich ohne Ankündigung ändern. Daikin Europe N.V. lehnt ausdrücklich jegliche Haftung für jeglichen direkten oder indirekten Schaden im weitesten Sinne, der sich aus der Verwendung und / oder Auslegung dieser Broschüre direkt oder indirekt ergibt, ab. Alle Urheberrechte aller Inhalte sind in Besitz von Daikin Europe N.V.